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Abstract 22 

Biocontrol strain Pseudomonas PA1201 produces pyoluteorin (Plt), which is an 23 

antimicrobial secondary metabolite. Plt represents a promising candidate pesticide due 24 

to its broad-spectrum antifungal and antibacterial activity. Although PA1201 contains a 25 

complete genetic cluster for Plt biosynthesis, it fails to produce detectable level of Plt 26 

when grown in media typically used for Pseudomonas strains. In this study, minimum 27 

medium (MM) was found to favor Plt biosynthesis. Using the medium M, which 28 

contains all the salts of MM medium except for mannitol, as a basal medium, we 29 

compared 10 carbon sources for their ability to promote Plt biosynthesis. Fructose, 30 

mannitol, and glycerol promoted Plt biosynthesis, with fructose being the most effective 31 

carbon source. Glucose or succinic acid had no significant effect on Plt biosynthesis, 32 

but effectively antagonized fructose-dependent synthesis of Plt. Promoter-lacZ fusion 33 

reporter strains demonstrated that fructose acted through activation of the 34 

pltLABCDEFG (pltL) operon but had no effect on other genes of plt gene cluster; 35 

glucose or succinic acid antagonized fructose-dependent pltL induction. 36 

Mechanistically, fructose-mediated Plt synthesis involved carbon catabolism 37 

repression. The two-component system CbrA/CbrB and small RNA catabolite 38 

repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small 39 

RNA binding protein Hfq and Crc negatively regulated fructose-induced Plt. Taken 40 

together, this study provides a new model of fructose-dependent Plt production in 41 

PA1201 that can help improve Plt yield by biosynthetic approaches. 42 
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1. Introduction 50 

Pyoluteorin (Plt) is an aromatic polyketide metabolite produced by diverse 51 

Pseudomonas strains and composed of a resorcinol ring and a dichloropyrrole [1-4]. Plt 52 

is best known for its toxicity against Pythium ultimum, an important soil-borne plant 53 

pathogen that causes damping-off of over 300 diverse plant species, including 54 

cucumber and other cucurbits [3-5]. Plt also inhibits bacteria and fungi that impact on 55 

human health or crop production such as Mycobacterium tuberculosis hominis and 56 

Phytophthora infestans, respectively [2]. More recently, Plt was demonstrated to inhibit 57 

the fungal forest pathogen Heterobasidion spp, which causes destructive root and butt 58 

rots in coniferous forests of the Northern Hemisphere [6]. The presence of one or more 59 

electron-withdrawing groups on Plt’s pyrrole is required for its antibacterial activity [7]. 60 

In parallel to these antibiotic properties, Plt has become a lead candidate compound for 61 

drug discovery against human triple-negative breast cancer and non-small cell lung 62 

cancer  [8,9]. Thus, since the 1980’s, Plt biosynthesis has attracted researchers’ 63 

attention. 64 

Pseudomonas aeruginosa M18, and P. protegens Pf-5 and H78 are three well-studied 65 

Plt-producers [10-12]. In P. protegens Pf-5, Plt production is associated with the gene 66 

cluster pltMRLABCDEFGZIJKNOP [11]. pltLABCDEFG encodes the enzymes 67 

responsible for polyketide synthesis (PKS) and non-ribosomal peptide synthesis 68 

(NRPS), two components essentials for plt synthesis [13], while the pltIJKNOP operon 69 

encodes an ATP-binding cassette (ABC) transporter thought to be involved in Plt efflux 70 

[14]. Moreover, Plt synthesis involves two transcription factors: PltR and PltZ [11,13]. 71 

PltM was elegantly demonstrated to catalyze the mono- and dichlorination of 72 

phloroglucinol, a compound that serves as potent transcriptional regulator of 73 

pyolyteorin biosynthesis, without the need for a biosynthetic intermediate [15]. 74 

In P. aeruginosa, Plt biosynthesis is strictly regulated by a complex protein network. 75 

PltR, a LysR family regulator, binds pltL promoter to activate pltL expression [10]. The 76 

TetR family regulator PltZ recognizes a semi-palindromic sequence in the promoter 77 



 

 

region of the pltIJKNOP operon [16]. While PltR is required for Plt autoinduction, it is 78 

not sufficient, and the direct binding of PltZ to pyoluteorin should concur [11]. In 79 

addition, Plt biosynthesis is regulated by a range of pathways, such as the Gac/Rsm 80 

network and quorum sensing (QS) systems [17-21]. 81 

Compared to intrinsic or QS regulation, the effects of environmental cues and medium 82 

nutrients on Plt production are relatively less studied. Carbon catabolism repression 83 

(CCR) is a main regulator of bacterial growth and metabolite biosynthesis [22]. In 84 

media containing multiple carbon sources, most bacteria use a unique source. CCR 85 

contributes to this exclusivity by repressing the genes involved in the metabolism and 86 

utilization of the other sources [23]. In P. aeruginosa, this regulation involves the CCR-87 

related protein catabolite repression control (Crc), and the small RNA (sRNA) binding 88 

protein Hfq [24]. Crc-bound Hfq binds to the A-rich motifs on target mRNA near to 89 

ribosome binding site, thereby preventing their translation [25]. The transcription of 90 

regulatory sRNAs, including CrcZ, is activated by the two-component signaling system 91 

CbrA/CbrB [26,27]. Thus, Hfq binds to sRNA CrcZ and Crc protein to form a 92 

regulatory complex [22,28-30]. 93 

In this study, we tested whether the carbon source in the growth medium and CCR 94 

influenced Plt synthesis. Such clues may serve to improve Plt yield via biosynthesis in 95 

the biocontrol strain Pseudomonas PA1201. 96 

2. Materials and Methods 97 

2.1 Bacterial strains, media, and growth conditions 98 

The bacterial strains and plasmids used in this study are described in Table S1 and S2. 99 

Escherichia coli strains were grown aerobically at 37°C in lysogeny broth medium (LB; 100 

5 g/L yeast extract, 10 g/L peptone and 10 g/L NaCl). When required, 20 μg/mL 5-101 

bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) was used for blue/white 102 

colony screening. The following media with difference carbon sources were used for 103 

PA1201 culture: KMB (King’s Medium B, 20 g/L tryptone, 0.392 g/L K2HPO4, 15 104 

mL/L glycerol and 0.732 g/L MgSO4, pH 7.5); PPM (pigment-producing medium, 22 105 



 

 

g/L tryptone, 20 g/L glucose and 5 g/L KNO3, pH 7.5); LB; MM (minimal medium, 4.5 106 

g/L KH2PO4, 10.5 g/L K2HPO4, 2.0 g/L mannitol, 2.0 g/L (NH4)2SO4, 0.16 g/L MgSO4, 107 

5 mg/L FeSO4•7H2O, 11 mg/L CaCl2•2H2O and 2 mg/L MnCl2•4H2O); M (MM 108 

medium without mannitol). All the strains were grown at 28C in Erlenmeyer flasks 109 

(250 mL) at 220 rpm in a rotary shaker (ZQWY-200N, SHzhichu, China). Antibiotics 110 

were added at the following concentrations when needed: 100 μg/mL spectinomycin 111 

(Spe); 50 μg/mL kanamycin (Kan); and 20 μg/mL tetracycline (Tet). All chemicals were 112 

purchased from Sangon Biotech (Shanghai). 113 

2.2 Quantitative analysis of Plt level in PA1201 cultures 114 

A total of 500 μL of the appropriate culture was collected and extracted with 1 mL of 115 

ethyl acetate. The organic phase was subsequently collected and evaporated. The 116 

residues were dissolved in 100 μL of methanol for analysis by HPLC (Agilent 117 

Technologies 1260 Infinity). A 5-µL sample was injected into a C18 reverse-phase 118 

column (Zorbax XDB; 5 μm, 4.6 × 150 mm) with a flow rate of 1 ml/min with the 119 

following steps: solvent A was water plus 0.1% (vol/vol) acetic acid, while solvent B 120 

was acetonitrile plus 0.1% (vol/vol) acetic acid. The column was preequilibrated in 90% 121 

solvent A–10% solvent B and was eluted using a linear gradient. After separation of an 122 

injected sample, the column was equilibrated in 90% solvent A–10% solvent B for 4.9 123 

min prior to the next injection. Under these chromatographic conditions, pyoluteorin 124 

was eluted at 11.05 min. Quantification was performed by integrating the peak area 125 

under the wavelength at 300 nm and Plt concentration using the standard curve obtained 126 

with a commercial pyoluteorin. Due to the different growth rate of PA1201 strains in 127 

different media, Plt level was defined as mg/(OD600.L) to normalize Plt production of 128 

the same population. 129 

2.3 Construction of lacZ-dependent reporter strains for transcriptional assay 130 

The method for constructing promoter-lacZ fusion reporter strains in PA1201 was 131 

previously described by Sun et al [31]. Briefly, the promoter region of a target gene 132 

(approximately 500 bp upstream of the start codon) was amplified by PCR. The primers 133 



 

 

used for the different reporter strains are listed in Table S3. The PCR products were 134 

then cloned into the vector mini-CTX-lacZ. The recombinant plasmids were integrated 135 

into the chromosomes of the PA1201-derived strains at the attP site, according to the 136 

protocol described by Becher and Schweizer [32]. 137 

2.4 Measurement of the β-Galactosidase activity in reporter strains 138 

The reporter strains were grown in different medium for 12 to 48 h at 28C. A total of 139 

100 μL of culture was then collected, centrifuged at 12,000 rpm (Thermo Scientific, 140 

Legend Micro 17R) for 5 min, and suspended in 1 mL Z buffer (0.2148 g/L 141 

Na2HPO4•12H2O, 62.4 mg/L NaH2PO4•2H2O, 7.455 mg/L KCl, 1.2037 mg/L MgSO4, 142 

pH 7.0) following the addition of 40 μL of chloroform and 40 μL of 0.1% (w/v) SDS 143 

solution cell lysis. Next, 200 μL of ONPG (o-nirophenyl-beta-β-D-galactopyranoside) 144 

was added to the cell extract and incubated at 28°C. When the reaction mixtures 145 

became yellow, the reaction was terminated by adding 500 μL of 1 M Na2CO3 solution 146 

and the reaction time (T) was recorded. The mixture was centrifuged at 12,000 rpm 147 

for 10 minutes. The optical density at a wavelength of 420 nm was measured on the 148 

collected 600-μL supernatant. The β-galactosidase activity was calculated according 149 

to the following formula: Miller Units = 2 [1000 OD420]/[ OD600 T]. 150 

2.5 Gene deletion and functional complementation analysis 151 

The method used for in-frame gene deletion was previously described elsewhere [31]. 152 

Briefly, the upstream and downstream regions of the gene to be deleted were fused by 153 

overlap extension PCR. The fusion product was then subcloned into the suicide vector 154 

pK18mobsacB carrying the sucrose-sensitive sacB gene. The resulting recombinant 155 

plasmid was introduced into PA1201 through mating, and the plasmid was subsequently 156 

integrated within the target gene by homologous recombination. The resulting strain 157 

was then plated on LB agar plate with 50 μg/mL Spectinomycin (Spe) and 5% (w/v) 158 

sucrose for a second single crossover homologous recombination event, resulting in 159 

allelic exchange. The resulting mutant was verified by PCR and subsequent DNA 160 

sequencing. The primers used for the PCR and subsequent screening are listed in Table 161 



 

 

S3. 162 

For complementation analysis, the target gene was amplified by PCR and cloned into 163 

the PBBR-1-MCS plasmid. The different constructs were then transferred into PA1201 164 

through triparental mating. Triparental mating between PA1201 and E. coli was carried 165 

out with the helper strain E. coli (pRK2013). The primers used for this process are 166 

shown in Table S3. 167 

2.6 Statistical Analysis 168 

All experiments were performed at least in triplicate independently. The ANOVA tests 169 

for all experimental datasets were performed using the JMP software program (version 170 

5.0). The significant effects of the different treatments were assessed by F values. The 171 

differences with significant F tests underwent further analysis by separation of means 172 

with Fisher’s protected least significant difference test using p < 0.05. 173 

 174 

3. Results 175 

3.1 Nutrient-poor MM medium favors Plt production in PA1201 176 

First, we compared the effect of different media on Plt production by Pseudomonas 177 

PA1201. PA1201 was inoculated to and grown in four types of media, i.e., KMB, LB, 178 

MM, and PPM for 48 h at 28C. At the endpoint, Plt in the different cultures was 179 

quantified by HPLC, using a commercially available Plt sample as reference (Fig. S1). 180 

PA1201 cultures grew best in KMB, LB, and PPM media, reaching OD600 ranging from 181 

7.3, 4.8 and 4.7, whereas MM medium supported PA1201 growth poorly, with an OD600 182 

of 0.9 at 48 h post inoculation (hpi) (Fig. 1A). However, MM medium yielded the 183 

highest concentration of Plt, with 24.5 mg/(OD600.L) at 24 hpi and 48.3 mg/(OD600.L) 184 

at 48 hpi; Plt concentration in KMB, LB, and PPM medium were less than 0.5 185 

mg/(OD600.L) (Fig. 1B). 186 

MM is a nutrient-poor medium with mannitol as the major carbon source. To further 187 

determine the effect of medium composition on Plt production, two media, 1/3 KMB 188 

medium, containing one third of all KMB components, and KMBM, containing all 189 



 

 

KMB components supplemented with 10 g/L mannitol, were prepared. No 190 

improvement in Plt yield was observed in 1/3 KMB or KMBM (Fig. S2), suggesting 191 

that Plt biosynthesis in MM was not improved by nutrient limitation or the unique 192 

availability of mannitol as carbon source, but rather, it was involved other specific 193 

regulators. 194 

3.2 Fructose is the optimal carbon source for Plt biosynthesis 195 

Carbon sources are key to bacterial growth and metabolite production. To determine 196 

the effects of different carbohydrates on PA1201 growth and Plt biosynthesis, a M 197 

medium with the same composition as MM medium except for mannitol was used as 198 

basis. Mannitol, glycerol, glucose, fructose, sorbitol, galactose, sucrose, lactose, 199 

maltose, xylose, and succinic acid was respectively added to M medium at a final 200 

concentration of 10 mM to generate the media MM, MGly, MG, MF, MSor, MGal, 201 

MSuc, MLac, MMal, MXyl, and MS. Succinic acid and glucose significantly increased 202 

PA1201 growth (Fig. 2A), with succinic acid being the most effective. Regardless, high 203 

level of Plt was only observed with mannitol, fructose, or glycerol supplementation (Fig. 204 

2B), with fructose being the most effective carbon source, reaching 174.6 mg/(OD600.L) 205 

at 48 hpi at 10 mM and displaying a dose-dependent effect at concentrations ranging 206 

from 5 mM to 20 mM (Fig. 2C). 207 

3.3 Glucose or succinic acid antagonizes fructose-promoted Plt biosynthesis 208 

In keeping with a previous report [33], we found that glucose and succinic acid were 209 

the preferred carbon sources for Pseudomonas PA1201 growth (Fig. 2A). To attempt 210 

combining the growth-promoting effect of glucose or succinic acid with the Plt-211 

promoting effect of fructose, and further improve Plt yield, glucose or succinic acid was 212 

respectively added into the MF medium at final concentrations of 1, 5, and 10 mM, 213 

which generated respectively, the media MFG1, MFG5, MFG10, MFS1, MFS5, and 214 

MFS10. Addition of glucose or succinic acid to MF medium significantly promoted 215 

PA1201 growth (Fig. 3A, B) but decreased Plt levels in a dose-dependent manner (Fig. 216 

3C, D). These results suggested an antagonistic effect between fructose and glucose, or 217 



 

 

fructose and succinic acid for Plt biosynthesis. 218 

3.4 Both the promoting effect of fructose and the antagonizing effect of glucose or 219 

succinic acid on Plt biosynthesis are mediated by the operon pltL 220 

In PA1201, Plt biosynthesis relies on the gene cluster pltMLRABCDEFGHIJKNO, 221 

composed of at least three operons, i.e., pltR, pltL and pltH (Fig. 4A). To monitor the 222 

activity of these operons upon exposure to different carbon sources, three reporter 223 

strains, PA1201::PpltL-lacZ, PA1201::PpltH-lacZ, and PA1201::PpltR-lacZ, were generated 224 

as previously described [31]. In MF agar plates supplemented with X-gal, 225 

PA1201::PpltH-lacZ and PA1201::PpltR-lacZ colonies exhibited a light blue color, while 226 

the PA1201::PpltL-lacZ colonies exhibited a dark blue color, provoked by the degradation 227 

of X-gal substrate by the reporter enzyme β-galactosidase, encoded by lacZ under the 228 

control of PltL (Fig. 4B). The quantification of the β-galactosidase activity confirmed 229 

that the promoter PpltL was activated to a higher level than PpltH or PpltR in presence of 230 

10 mM fructose (Fig. 4C). Fructose upregulated PpltL activity in a dose-dependent 231 

manner (Fig. 4C), while increasing fructose concentration did not modify PpltR or PpltH 232 

activity (Fig. 4C). These results suggested that the effect of fructose on Plt production 233 

is mediated by the pltL operon.When 10 mM glucose (MFG10) or 10 mM succinic acid 234 

(MFS10) were added to MF liquid medium, PpltL activity was significantly lowered 235 

compared with that observed on MF liquid medium (Fig. 4D), suggesting that glucose 236 

or succinic acid antagonized the effect of fructose on operon pltL, and consequently, on 237 

Plt biosynthesis. 238 

3.5 The two-component signal system CbrA/CbrB is essential for fructose-239 

dependent induction of Plt biosynthesis 240 

The CbrA/CbrB system is unique to bacteria of the Pseudomonaceae family. It 241 

integrates various signals and regulates multiple physiological processes involved in 242 

bacterial adaptation to varying environments [34]. To investigate the possible role of 243 

CbrA/CbrB in fructose-dependent Plt induction, strains either deleted for cbrB 244 

[ΔcbrB(pBBR)] or deleted and complemented wi[[th overexpressed CbrB 245 



 

 

[ΔcbrB(pBBR-cbrB)] were generated and cultured in MF medium. These genetic 246 

alterations did not alter PA1201 growth in MF medium (Fig. 5A). Nonetheless, Plt was 247 

not detected in ΔcbrB(pBBR) cultures at 24 or 48 hpi, whereas cbrB overexpression 248 

restored Plt expression to wild-type level in the ΔcbrB(pBBR-cbrB) strain (Fig. 5A). 249 

These results suggested that the CbrA/CbrB system is required for fructose-promoted 250 

Plt biosynthesis. 251 

Similarly, in the MFS10 or MFG10 medium, containing respectively the antagonist 252 

glucose or succinic acid, Plt synthesis was not detectable with ΔcbrB(pBBR), but was 253 

restored beyond wild-type level with ΔcbrB(pBBR-cbrB), albeit Plt levels in these 254 

media remained below those in MF for all strains (Fig. 5B, C). These observations 255 

suggested that the inhibition exerted by glucose or succinic acid was slightly overcome 256 

by CbrB overexpression, implying that CbrA/CbrB may participate to the 257 

antagonization of fructose-promoted Plt biosynthesis by these nutrients. 258 

3.6 The sRNA CrcZ is essential for fructose-dependent induction of Plt 259 

biosynthesis 260 

The crcZ gene, encoding crcZ sRNA, is located immediately downstream of cbrB (Fig. 261 

6A). It has been shown that CbrB could bind the regulatory regions of crcZ and activate 262 

its transcription from RpoN-dependent promoters [35]. To investigate whether crcZ is 263 

required for fructose-dependent Plt biosynthesis, PA1201(pBBR), ΔcrcZ(pBBR) and 264 

ΔcrcZ(pBBR-crcZ) strains were constructed and grown in MF medium. In ΔcrcZ(pBBR) 265 

cultures, Plt level was strongly diminished at 24- and 48-hpi compared to 266 

PA1201(pBBR) cultures, whereas in ΔcrcZ(pBBR) cultures, Plt production was 267 

restored to levels obtained in PA1201(pBBR) control cultures (Fig. 6B). 268 

In MFS10 or MFG10 medium, the Plt level produced by the ΔcrcZ(pBBR) strain was 269 

significantly lower than that produced by PA1201(pBBR); crcZ overexpression in 270 

ΔcrcZ(pBBR-crcZ) increased significantly Plt level at 48 hpi in MFS10 medium, 271 

exceeding wild-type Plt level, and to a lesser extend in MFG10 medium (Fig. 6C, D). 272 

These findings suggested that crcZ partly mediates the antagonistic effects of glucose 273 



 

 

and succinate on fructose-induced Plt biosynthesis. 274 

3.7 Hfq is involved in fructose promoting Plt biosynthesis and mediates the 275 

antagonistic effects of succinic acid and glucose on fructose-induced Plt 276 

biosynthesis 277 

Hfq is a pleiotropic regulator notably involved in CCR in Pseudomonas and related 278 

bacterial species [36]. To investigate the possible roles of hfq in fructose-induced Plt 279 

biosynthesis, strains deleted for hfq (Δhfq) or overexpressing hfq [Δhfq(pBBR-hfq)] 280 

were generated in PA1201 and grown in MF medium. Deletion of hfq had no significant 281 

impact on Plt level at 24- or 48-hpi (Fig. 7A). Consistently, pltL promoter-dependent β-282 

galactosidase activity in the reporter strain PA1201::PpltL-lacZ at 48 hpi was not 283 

different from that in Δhfq::PpltL-lacZ (Fig. 7B). However, overexpression of hfq in 284 

Δhfq(pBBR-hfq) reduced Plt biosynthesis to a level much lower than that in wild-type 285 

PA1201 (Fig. 7A), indicating an inhibitory effect of Hfq on fructose-induced Ptl 286 

synthesis. 287 

In MFS10 medium, Plt production by the Δhfq mutant reached 39.5 mg/(OD600.L) at 288 

48 hpi, which was significantly higher than the production achieved by wild-type 289 

PA1201 [8.4 mg/(OD600.L); Fig. 7C]. This result indicated that the inhibition of 290 

fructose-induced Plt synthesis by succinic acid required Hfq. Overexpression of hfq in 291 

Δhfq restored Plt inhibition to wild-type level (Fig. 7C). Consistently, PpltL-dependent 292 

β-galactosidase activity in the reporter strain Δhfq::PpltL-lacZ was significantly higher 293 

than that in PA1201::PpltL-lacZ when cultured in MFS10 (Fig. 7B). Similar trends in Plt 294 

level and PpltL-dependent β-galactosidase activity were observed in MFG10 medium 295 

(Figs. 7B–D). These findings suggest that Hfq mediates the antagonistic effects of 296 

succinate and glucose on fructose-dependent Plt biosynthesis. 297 

3.8 Crc protein is involved in fructose promoting Plt biosynthesis and mediates the 298 

antagonistic effects of succinic acid and glucose on fructose-induced Plt 299 

biosynthesis 300 

The Crc protein can stabilize Hfq binding to the A-rich motifs of target mRNAs to form 301 



 

 

tripartite Hfq–RNA–Crc complexes [37]. In PA1201, the 780-bp crc gene is flanked by 302 

the pyrE gene, encoding an orotate phosphoribosyltransferase, and the gene encoding 303 

DUF4870 domain-containing protein (Fig. 8A). To investigate the possible role of Crc 304 

in fructose-promoted Plt biosynthesis, strains deleted for crc [Δcrc(pBBR)] or 305 

overexpressing crc [Δcrc(pBBR-crc)] were constructed in PA1201 and grown in MF. 306 

Plt levels in Δcrc was not significantly different from that in PA1201 at 24 and 48 hpi 307 

(Fig. 8B). In contrast, overexpression of crc in Δcrc(pBBR-crc) decreased Plt 308 

production below wild-type level. Further, no additive effect was observed on Plt 309 

biosynthesis in the double knockout strain ΔhfqΔcrc, which suggested that these two 310 

gene products acted in the same inhibitory pathway (Fig. S3). 311 

In MFS10 or MFG10 medium, the Plt levels obtained with Δcrc at 48 hpi, which were 312 

respectively, 15.4 and 20.7 mg/(OD600.L), were significantly higher than that obtained 313 

with PA1201 [2.7 and 7.0 mg/(OD600.L), respectively]. Crc overexpression in 314 

Δcrc(pBBR-crc) strain restored the inhibition of Plt production observed in wild-type 315 

PA1201 cultured in MFG10 and MFS10 media (Fig. 8C). Thus, the antagonizing effect 316 

of glucose or succinate on fructose-dependent Plt biosynthesis is mediated by Crc. 317 

 318 

4. Discussion 319 

The natural metabolite Plt can effectively inhibit the growth of a variety of plant 320 

pathogenic bacteria and fungi, especially oomycetes causing crop diseases that have 321 

high economic impacts [38]. This antimicrobial property makes Plt a promising 322 

candidate for the development of new biopesticides. However, Plt yield in wild-type 323 

Pseudomonas strains is far too low to meet industrial demands. The type of carbon 324 

source and its availability was shown to affect the production of bacterial antimicrobials 325 

in various bacterial genera [39]. The environment and nutrients have been identified as 326 

influential factors for Plt production in Pseudomonas. For example, the co-production 327 

of approximately 150 mg/L of Plt and 500 mg/L of 2,4-diacetylphloroglucinol, another 328 

antimicrobial metabolite, was achieved by flask cultivation in a medium containing 329 



 

 

approximately 2% ethanol [40]; Duffy et al. found that Plt production was stimulated 330 

by Zn2+, Co2+, and glycerol, but repressed by glucose; adding glucose to NBY medium 331 

could inhibit Plt production by Pseudomonas fluorescens CHA0, while CHA0 332 

produced more Plt using mannitol and glycerol as sole carbon sources [41]. In this study, 333 

we investigated the effects of 11 carbon sources on bacterial growth and Plt production 334 

in PA1201. Our results showed that the nutrient-poor MM medium favored Plt 335 

production. Addition of fructose, mannitol, or glycerol promoted Plt biosynthesis, 336 

whereas addition of glucose or succinic acid enhanced bacterial growth but has no 337 

significant effect on Plt biosynthesis. Importantly, glucose or succinic acid antagonized 338 

fructose-dependent Plt production. Based on these results, we developed the medium 339 

MF and obtained a Plt yield of 190.26 mg/L in wild-type PA1201. These findings 340 

provide new clues to improve Plt titer through medium optimization. 341 

Plt biosynthetic and efflux mechanisms have been well established [11,16,20,21,42]. 342 

The regulatory network for Plt biosynthesis, including transcriptional factors, two-343 

component systems, and QS systems, has also been elucidated in several Pseudomonas 344 

strains [17,43-48]. This network has been used as target to enhance Plt production by 345 

engineering. For example, Plt production in P. protegens H78 was substantially 346 

enhanced from 15 to 214 mg/L by deletion of the rsmE gene involved in the Gac/Rsm-347 

RsmE cascade, lon ATP-dependent protease gene, inhibitor gene pltZ, and inhibitory 348 

sequence in pltR operator region, followed by overexpression of Plt ABC-type 349 

transporter operon pltIJKNOP [12]. A derivative of P. protegens Pf-5, in which 23 types 350 

of rare codons in pltR were substituted with preferred synonymous codons, produced 351 

15-time higher levels of pyoluteorin than wild-type Pf-5 [49]. 352 

CCR is a general mechanism that facilitates the catabolism (assimilation) of carbon 353 

from different sources, supports efficient growth, and represses the catabolism of other 354 

potentially usable carbon sources that are less energetically efficient [50]. Thus, CCR 355 

allows bacterial cells to preferentially assimilate a single carbon compound among 356 

multiple carbon sources. In addition, CCR potentially control antibiotic biosynthesis 357 



 

 

indirectly in Pseudomonas spp. [51]. The CCR regulatory cascade is composed of three 358 

layers: the two-component system CbrA/CbrB, the CrcZ/Y sRNAs, and the 359 

translational repressor Crc [28]. Our results clearly demonstrated that fructose promotes 360 

Plt production directly by increasing the transcription of pltL operon. CCR-associated 361 

regulators are required for fructose-dependent pltL expression and Plt production. A 362 

more complete understanding of the molecular mechanisms underlying the regulation 363 

of pltL expression by CCR in PA1201 can help optimizing Plt production and its 364 

industrial application. 365 

The two-component CbrA/CbrB system is involved in nutritional adaptation and was 366 

first described in P. aeruginosa as a regulator of hierarchical utilization of various 367 

carbon sources [26]. To date, no orthologous system has been described in other species, 368 

and its activating signals remain elusive, although some authors suggested that it could 369 

include the C:N balance [34]. In this study, we found that at least three carbohydrates, 370 

fructose, mannitol, and glycerol, could promote Plt production. Glucose or succinic 371 

acid antagonized fructose-dependent Plt production. Thus, these carbohydrates are 372 

unlikely the direct activators of the CbrA/CbrB system and further investigation is 373 

necessary to clarify the underlying mechanisms of this regulation. From the current 374 

results, we proposed a working model to explain how different carbohydrates affect Plt 375 

production in PA1201 cells (Fig. 9). In absence of fructose, mannitol, or glycerol, or in 376 

presence of both fructose and glucose or fructose and succinic acid, the CbrA/CbrB 377 

system is not activated, no sRNA CrcZ is expressed, and Hfq and Crc form a two-378 

protein complex. This complex binds pltR mRNA, inhibiting PltR protein production, 379 

thereby impeding the initiation of pltL expression. In sole presence of fructose, 380 

mannitol or glycerol, the CbrA/CbrB system is activated and phosphorylated CbrB 381 

binds crcZ promoter to initiate the transcription of CrcZ sRNA. Hfq and Crc proteins 382 

bind CrcZ to form a three-partite complex. This complex loses the capacity to bind pltR 383 

mRNA, enabling PltR protein translation. PltR dimers activates the promoter of pltL 384 

operon, which in turn, initiates Plt biosynthesis (Fig. 9). 385 
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Figure legends: 596 

Figure 1. Plt production by PA1201 strain in different media. (A) Growth kinetics 597 

of PA1201 in KMB, LB, PPM and MM media. (B) Plt production at 24- and 48-hours 598 

post inoculation (hpi). The data are shown as the averages of three technical repeats 599 

with standard deviation. Statistical significance between groups, assessed by ANOVA 600 

followed by Fisher’s protected least significant difference test, are shown as one 601 

asterisk (p ≤ 0.05) or two asterisks (p ≤ 0.01). 602 

Figure 2. Fructose promotes Plt production in minimal medium (M). (A) Growth 603 

kinetics of PA1201 in minimal M medium (KH2PO4 4.5 g/L, K2HPO4 10.5 g/L, 604 

(NH4)2SO4 2.0 g/L, MgSO4.7H2O 0.16 g/L, FeSO4.7H2O 0.005 g/L,CaCl2.2H2O 0.011 605 

g/L, MnCl2.4H2O 0.002 g/L), supplemented with 5 mM carbohydrates, as indicated: 606 

Fru: fructose; Mal: maltose; Glu: glucose; Sor:sorbitol; Suc: sucrose; Lac: lactose; Gal: 607 

galactose; Xyl: xylose; Succ: succinic acid. (B) Plt level in PA1201. (C) Plt level at 48 608 

hpi in M medium supplemented with 5–20 mM fructose. The data are shown as the 609 

averages of three technical repeats with standard deviation. Statistical significance 610 

between groups, assessed by ANOVA followed by Fisher’s protected least significant 611 

difference test, are shown as one asterisk (p ≤ 0.05) or two asterisks (p ≤ 0.01). 612 

Figure 3. Glucose or succinic acid antagonizes fructose-induced Plt 613 

biosynthesis.(A) Growth kinetics of PA1201 in MF medium supplemented with 1–10 614 

mM glucose, or (B), 1-10 mM succinic acid. (C) Plt levels at 24- and 48-hpi in MF 615 

medium supplemented with 1-10 mM, or (D), 1–10 mM succinic acid. The data are 616 

shown as the averages of three technical repeats with standard deviation. Statistical 617 

significance between groups, assessed by ANOVA followed by Fisher’s protected least 618 

significant difference test, are shown as one asterisk (p ≤ 0.05), two asterisks (p ≤ 0.01), 619 

or three asterisks (p ≤ 0.001) 620 

Figure 4. Effects of fructose, glucose, and succinic acid on pltL expression. (A) 621 

Plt gene cluster and the three studied promoters. (B) Representative pictures showing 622 

the colonies carrying different reporter transgenes PA1201-lacZ (negative control), 623 



 

 

PA1201::PpltL-lacZ, PA1201::PpltH-lacZ and PA1201::PpltR-lacZ on the MF agar plate 624 

supplemented with 40 mg/L X-gal. (C) Effects of 5–20 mM fructose on PpltR-, PpltH- and 625 

PpltL-dependent β-galactosidase activity in PA1201 at 48 hpi. (D) PpltL-dependent β-626 

galactosidase activity in PA1201 cultured in MF, MFS10, and MFG10 media. The data 627 

are shown as the averages of three technical repeats with standard deviation. Statistical 628 

significance between groups, assessed by ANOVA followed by Fisher’s protected least 629 

significant difference test, are shown as one asterisk (p ≤ 0.05) or two asterisks (p ≤ 630 

0.01). 631 

Figure 5. CbrB positively regulates Plt biosynthesis in PA1201. (A) Growth 632 

kinetics and Plt production by the strains PA1201(pBBR), ΔcbrB(pBBR) and 633 

ΔcbrB(pBBR-cbrB) at 24- and 48-hpi in MF medium, in (B) MFS medium, and in (C) 634 

MFG medium. The data are shown as the averages of three technical repeats with 635 

standard deviation. Statistical significance between groups, assessed by ANOVA 636 

followed by Fisher’s protected least significant difference test, are shown as one 637 

asterisk (p ≤ 0.05) or two asterisks (p ≤ 0.01). 638 

Figure 6. sRNA CrcZ positively regulates Plt biosynthesis in PA1201. (A) cbrA, 639 

cbrB, and crcZ loci on PA1201 chromosome. (B) Growth kinetics and Plt production 640 

of the strains PA1201(pBBR), ΔcrcZ(pBBR) and ΔcrcZ(pBBR-crcZ) at 24- and 48-hpi 641 

in MF medium, in (C) MFS10 medium, or in (D) MFG10 medium. The data are shown 642 

as the averages of three technical repeats with standard deviation. Statistical 643 

significance between groups, assessed by ANOVA followed by Fisher’s protected least 644 

significant difference test, are shown as one asterisk (p ≤ 0.05) or two asterisks (p ≤ 645 

0.01). 646 

Figure 7. Role of Hfq in Plt biosynthesis. (A) Plt production by PA1201(pBBR), 647 

Δhfq(pBBR), and Δhfq(pBBR-hfq) at 24- and 48-hpi in MF medium. (B) PpltL-648 

dependent β-galactosidase activity in strains PA1201 and Δhfq cultured in MF, MFG10, 649 

or MFS10 medium. (C) Plt production by PA1201(pBBR), Δhfq(pBBR) and 650 

Δhfq(pBBR-hfq) at 24- and 48-hpi in MFS10 medium, or in (D) MFG10 medium. The 651 



 

 

data are shown as the averages of three technical repeats with standard deviation. 652 

Statistical significance between groups, assessed by ANOVA followed by Fisher’s 653 

protected least significant difference test, are shown as one asterisk (p ≤ 0.05) or two 654 

asterisks (p ≤ 0.01). 655 

Figure 8. Role of Crc in Plt biosynthesis. (A) crc locus on PA1201 chromosome. 656 

(B)Growth kinetics and Plt production by PA1201(pBBR), Δcrc(pBBR), and 657 

Δcrc(pBBR-crc) at 24- and 48-hpi in MF medium, or in (C) MFS10 and MFG10 media. 658 

The data are shown as the averages of three technical repeats with standard deviation. 659 

Statistical significance between groups, assessed by ANOVA followed by Fisher’s 660 

protected least significant difference test, are shown as one asterisk (p ≤ 0.05) or two 661 

asterisks (p ≤ 0.01). 662 

Figure 9. Model of regulation of pyoluteorin biosynthesis by carbohydrates via 663 

carbon catabolite repression (CCR) mechanism. (A) Plt production is limited in the 664 

absence of fructose, mannitol and glycerol or in the presence of both 665 

fructose/mannitol/glycerol and glucose/succinic acid. (B) Plt production is induced in 666 

the presence of sole fructose/mannitol/glycerol. 667 
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