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Mechanistically, fructose-mediated PIt synthesis involved carbon catabolism
repression. The two-component system CbrA/CbrB and small RNA catabolite
repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small
RNA binding protein Hfq and Crc negatively regulated fructose-induced PIt. Taken
together, this study provides a new model of fructose-dependent PIt production in
PA1201 that can help improve PIt yield by biosynthetic approaches.
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Abstract

Biocontrol strain Pseudomonas PA1201 produces pyoluteorin (Plt), which is an
antimicrobial secondary metabolite. Plt represents a promising candidate pesticide due
to its broad-spectrum antifungal and antibacterial activity. Although PA1201 contains a
complete genetic cluster for Plt biosynthesis, it fails to produce detectable level of Plt
when grown in media typically used for Pseudomonas strains. In this study, minimum
medium (MM) was found to favor Plt biosynthesis. Using the medium M, which
contains all the salts of MM medium except for mannitol, as a basal medium, we
compared 10 carbon sources for their ability to promote Plt biosynthesis. Fructose,
mannitol, and glycerol promoted Plt biosynthesis, with fructose being the most effective
carbon source. Glucose or succinic acid had no significant effect on Plt biosynthesis,
but effectively antagonized fructose-dependent synthesis of Plt. Promoter-/acZ fusion
reporter strains demonstrated that fructose acted through activation of the
pltLABCDEFG (pltL) operon but had no effect on other genes of pl/t gene cluster;
glucose or succinic acid antagonized fructose-dependent pl/tL induction.
Mechanistically, fructose-mediated PIt synthesis involved carbon catabolism
repression. The two-component system CbrA/CbrB and small RNA catabolite
repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small
RNA binding protein Hfq and Crc negatively regulated fructose-induced Plt. Taken
together, this study provides a new model of fructose-dependent Plt production in

PA1201 that can help improve Plt yield by biosynthetic approaches.

Keywords: Pseudomonas; biocontrol; pyoluteorin; fructose; carbon catabolism

repression
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1. Introduction

Pyoluteorin (Plt) is an aromatic polyketide metabolite produced by diverse
Pseudomonas strains and composed of a resorcinol ring and a dichloropyrrole [1-4]. Plt
is best known for its toxicity against Pythium ultimum, an important soil-borne plant
pathogen that causes damping-off of over 300 diverse plant species, including
cucumber and other cucurbits [3-5]. Plt also inhibits bacteria and fungi that impact on
human health or crop production such as Mycobacterium tuberculosis hominis and
Phytophthora infestans, respectively [2]. More recently, Plt was demonstrated to inhibit
the fungal forest pathogen Heterobasidion spp, which causes destructive root and butt
rots in coniferous forests of the Northern Hemisphere [6]. The presence of one or more
electron-withdrawing groups on Plt’s pyrrole is required for its antibacterial activity [7].
In parallel to these antibiotic properties, Plt has become a lead candidate compound for
drug discovery against human triple-negative breast cancer and non-small cell lung
cancer [8,9]. Thus, since the 1980’s, Plt biosynthesis has attracted researchers’
attention.

Pseudomonas aeruginosa M18, and P. protegens Pf-5 and H78 are three well-studied
Plt-producers [10-12]. In P. protegens Pf-5, Plt production is associated with the gene
cluster pltMRLABCDEFGZIJKNOP [11]. pltLABCDEFG encodes the enzymes
responsible for polyketide synthesis (PKS) and non-ribosomal peptide synthesis
(NRPS), two components essentials for plt synthesis [13], while the pltIJKNOP operon
encodes an ATP-binding cassette (ABC) transporter thought to be involved in Plt efflux
[14]. Moreover, Plt synthesis involves two transcription factors: PItR and PItZ [11,13].
PItM was elegantly demonstrated to catalyze the mono- and dichlorination of
phloroglucinol, a compound that serves as potent transcriptional regulator of
pyolyteorin biosynthesis, without the need for a biosynthetic intermediate [15].

In P. aeruginosa, Plt biosynthesis is strictly regulated by a complex protein network.
PItR, a LysR family regulator, binds p/tL promoter to activate p/tL expression [10]. The

TetR family regulator PItZ recognizes a semi-palindromic sequence in the promoter



78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

region of the p/tI/KNOP operon [16]. While PItR is required for Plt autoinduction, it is
not sufficient, and the direct binding of PItZ to pyoluteorin should concur [11]. In
addition, PIt biosynthesis is regulated by a range of pathways, such as the Gac/Rsm
network and quorum sensing (QS) systems [17-21].

Compared to intrinsic or QS regulation, the effects of environmental cues and medium
nutrients on PIt production are relatively less studied. Carbon catabolism repression
(CCR) is a main regulator of bacterial growth and metabolite biosynthesis [22]. In
media containing multiple carbon sources, most bacteria use a unique source. CCR
contributes to this exclusivity by repressing the genes involved in the metabolism and
utilization of the other sources [23]. In P. aeruginosa, this regulation involves the CCR-
related protein catabolite repression control (Crc), and the small RNA (sRNA) binding
protein Hfq [24]. Crc-bound Hfq binds to the A-rich motifs on target mRNA near to
ribosome binding site, thereby preventing their translation [25]. The transcription of
regulatory sRNAs, including CrcZ, is activated by the two-component signaling system
CbrA/CbrB [26,27]. Thus, Hfq binds to sSRNA CrcZ and Crc protein to form a
regulatory complex [22,28-30].

In this study, we tested whether the carbon source in the growth medium and CCR
influenced Plt synthesis. Such clues may serve to improve Plt yield via biosynthesis in
the biocontrol strain Pseudomonas PA1201.

2. Materials and Methods

2.1 Bacterial strains, media, and growth conditions

The bacterial strains and plasmids used in this study are described in Table S1 and S2.
Escherichia coli strains were grown aerobically at 37°C in lysogeny broth medium (LB;
5 g/L yeast extract, 10 g/L peptone and 10 g/L NaCl). When required, 20 pg/mL 5-
bromo-4-chloro-3-indolyl-B-D-galactopyranoside (X-Gal) was used for blue/white
colony screening. The following media with difference carbon sources were used for
PA1201 culture: KMB (King’s Medium B, 20 g/L tryptone, 0.392 g/LL K;HPOs, 15

mL/L glycerol and 0.732 g/l MgSOs, pH 7.5); PPM (pigment-producing medium, 22
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g/L tryptone, 20 g/L glucose and 5 g/LL KNOs, pH 7.5); LB; MM (minimal medium, 4.5
g/L KH2POs4, 10.5 g/L KoHPO4, 2.0 g/L mannitol, 2.0 g/L (NH4)2S04, 0.16 g/ MgSOs,
5 mg/L FeSO47H20, 11 mg/L CaCl2*2H,0 and 2 mg/L MnCl;+4H.0); M (MM
medium without mannitol). All the strains were grown at 28°C in Erlenmeyer flasks
(250 mL) at 220 rpm in a rotary shaker (ZQWY-200N, SHzhichu, China). Antibiotics
were added at the following concentrations when needed: 100 pg/mL spectinomycin
(Spe); 50 pg/mL kanamycin (Kan); and 20 pg/mL tetracycline (Tet). All chemicals were
purchased from Sangon Biotech (Shanghai).

2.2 Quantitative analysis of Plt level in PA1201 cultures

A total of 500 pL of the appropriate culture was collected and extracted with 1 mL of
ethyl acetate. The organic phase was subsequently collected and evaporated. The
residues were dissolved in 100 pL of methanol for analysis by HPLC (Agilent
Technologies 1260 Infinity). A 5-uL sample was injected into a C18 reverse-phase
column (Zorbax XDB; 5 um, 4.6 x 150 mm) with a flow rate of 1 ml/min with the
following steps: solvent A was water plus 0.1% (vol/vol) acetic acid, while solvent B
was acetonitrile plus 0.1% (vol/vol) acetic acid. The column was preequilibrated in 90%
solvent A-10% solvent B and was eluted using a linear gradient. After separation of an
injected sample, the column was equilibrated in 90% solvent A—10% solvent B for 4.9
min prior to the next injection. Under these chromatographic conditions, pyoluteorin
was eluted at 11.05 min. Quantification was performed by integrating the peak area
under the wavelength at 300 nm and PIt concentration using the standard curve obtained
with a commercial pyoluteorin. Due to the different growth rate of PA1201 strains in
different media, PIt level was defined as mg/(ODsoo.L) to normalize Plt production of
the same population.

2.3 Construction of lacZ-dependent reporter strains for transcriptional assay

The method for constructing promoter-/acZ fusion reporter strains in PA1201 was
previously described by Sun et al [31]. Briefly, the promoter region of a target gene

(approximately 500 bp upstream of the start codon) was amplified by PCR. The primers



134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

used for the different reporter strains are listed in Table S3. The PCR products were
then cloned into the vector mini-CTX-lacZ. The recombinant plasmids were integrated
into the chromosomes of the PA1201-derived strains at the a#tP site, according to the
protocol described by Becher and Schweizer [32].

2.4 Measurement of the B-Galactosidase activity in reporter strains

The reporter strains were grown in different medium for 12 to 48 h at 28°C. A total of

100 pL of culture was then collected, centrifuged at 12,000 rpm (Thermo Scientific,

Legend Micro 17R) for 5 min, and suspended in 1 mL Z buffer (0.2148 g/L

Na;HPO4°12H,0, 62.4 mg/L NaH2PO4+2H,0, 7.455 mg/LLKCl, 1.2037 mg/L MgSQOs4,

pH 7.0) following the addition of 40 pL of chloroform and 40 pL of 0.1% (w/v) SDS

solution cell lysis. Next, 200 uL of ONPG (o-nirophenyl-beta-f-D-galactopyranoside)

was added to the cell extract and incubated at 28°C. When the reaction mixtures

became yellow, the reaction was terminated by adding 500 pL of 1 M Na>COs solution

and the reaction time (T) was recorded. The mixture was centrifuged at 12,000 rpm

for 10 minutes. The optical density at a wavelength of 420 nm was measured on the

collected 600-uL supernatant. The B-galactosidase activity was calculated according

to the following formula: Miller Units = 2 [1000 OD420]/[ ODeoo T].

2.5 Gene deletion and functional complementation analysis

The method used for in-frame gene deletion was previously described elsewhere [31].
Briefly, the upstream and downstream regions of the gene to be deleted were fused by
overlap extension PCR. The fusion product was then subcloned into the suicide vector
pK18mobsacB carrying the sucrose-sensitive sacB gene. The resulting recombinant
plasmid was introduced into PA1201 through mating, and the plasmid was subsequently
integrated within the target gene by homologous recombination. The resulting strain
was then plated on LB agar plate with 50 pg/mL Spectinomycin (Spe) and 5% (w/v)
sucrose for a second single crossover homologous recombination event, resulting in
allelic exchange. The resulting mutant was verified by PCR and subsequent DNA

sequencing. The primers used for the PCR and subsequent screening are listed in Table
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For complementation analysis, the target gene was amplified by PCR and cloned into
the PBBR-1-MCS plasmid. The different constructs were then transferred into PA1201
through triparental mating. Triparental mating between PA1201 and E. coli was carried
out with the helper strain E. coli (pRK2013). The primers used for this process are
shown in Table S3.

2.6 Statistical Analysis

All experiments were performed at least in triplicate independently. The ANOVA tests
for all experimental datasets were performed using the JMP software program (version
5.0). The significant effects of the different treatments were assessed by F values. The
differences with significant F tests underwent further analysis by separation of means

with Fisher’s protected least significant difference test using p < 0.05.

3. Results

3.1 Nutrient-poor MM medium favors PIt production in PA1201

First, we compared the effect of different media on Plt production by Pseudomonas
PA1201. PA1201 was inoculated to and grown in four types of media, i.e., KMB, LB,
MM, and PPM for 48 h at 28°C. At the endpoint, Plt in the different cultures was
quantified by HPLC, using a commercially available Plt sample as reference (Fig. S1).
PA1201 cultures grew best in KMB, LB, and PPM media, reaching ODgoo ranging from
7.3,4.8 and 4.7, whereas MM medium supported PA1201 growth poorly, with an ODsoo
of 0.9 at 48 h post inoculation (hpi) (Fig. 1A). However, MM medium yielded the
highest concentration of Plt, with 24.5 mg/(ODeoo.L) at 24 hpi and 48.3 mg/(ODeoo.L)
at 48 hpi; Plt concentration in KMB, LB, and PPM medium were less than 0.5
mg/(ODeoo.L) (Fig. 1B).

MM is a nutrient-poor medium with mannitol as the major carbon source. To further
determine the effect of medium composition on Plt production, two media, 1/3 KMB

medium, containing one third of all KMB components, and KMBM, containing all
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KMB components supplemented with 10 g/L mannitol, were prepared. No
improvement in Plt yield was observed in 1/3 KMB or KMBM (Fig. S2), suggesting
that Plt biosynthesis in MM was not improved by nutrient limitation or the unique
availability of mannitol as carbon source, but rather, it was involved other specific
regulators.

3.2 Fructose is the optimal carbon source for Plt biosynthesis

Carbon sources are key to bacterial growth and metabolite production. To determine
the effects of different carbohydrates on PA1201 growth and PIt biosynthesis, a M
medium with the same composition as MM medium except for mannitol was used as
basis. Mannitol, glycerol, glucose, fructose, sorbitol, galactose, sucrose, lactose,
maltose, xylose, and succinic acid was respectively added to M medium at a final
concentration of 10 mM to generate the media MM, MGly, MG, MF, MSor, MGal,
MSuc, MLac, MMal, MXyl, and MS. Succinic acid and glucose significantly increased
PA1201 growth (Fig. 2A), with succinic acid being the most effective. Regardless, high
level of PIt was only observed with mannitol, fructose, or glycerol supplementation (Fig.
2B), with fructose being the most effective carbon source, reaching 174.6 mg/(ODeoo.L)
at 48 hpi at 10 mM and displaying a dose-dependent effect at concentrations ranging
from 5 mM to 20 mM (Fig. 2C).

3.3 Glucose or succinic acid antagonizes fructose-promoted Plt biosynthesis

In keeping with a previous report [33], we found that glucose and succinic acid were
the preferred carbon sources for Pseudomonas PA1201 growth (Fig. 2A). To attempt
combining the growth-promoting effect of glucose or succinic acid with the Plt-
promoting effect of fructose, and further improve Plt yield, glucose or succinic acid was
respectively added into the MF medium at final concentrations of 1, 5, and 10 mM,
which generated respectively, the media MFG1, MFGS5, MFG10, MFS1, MFS5, and
MFS10. Addition of glucose or succinic acid to MF medium significantly promoted
PA1201 growth (Fig. 3A, B) but decreased Plt levels in a dose-dependent manner (Fig.

3C, D). These results suggested an antagonistic effect between fructose and glucose, or
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fructose and succinic acid for Plt biosynthesis.

3.4 Both the promoting effect of fructose and the antagonizing effect of glucose or

succinic acid on Plt biosynthesis are mediated by the operon pltL

In PA1201, Plt biosynthesis relies on the gene cluster p/tMLRABCDEFGHIJKNO,
composed of at least three operons, i.e., pltR, pltL and pltH (Fig. 4A). To monitor the
activity of these operons upon exposure to different carbon sources, three reporter
strains, PA1201::Ppi-lacZ, PA1201::Pyun-lacZ, and PA1201::Ppir-lacZ, were generated
as previously described [31]. In MF agar plates supplemented with X-gal,
PA1201::Ppiu-lacZ and PA1201::Ppir-lacZ colonies exhibited a light blue color, while
the PA1201::Ppi-lacZ colonies exhibited a dark blue color, provoked by the degradation
of X-gal substrate by the reporter enzyme B-galactosidase, encoded by /acZ under the
control of PltL (Fig. 4B). The quantification of the -galactosidase activity confirmed
that the promoter Py was activated to a higher level than Py or Ppir in presence of
10 mM fructose (Fig. 4C). Fructose upregulated Py activity in a dose-dependent
manner (Fig. 4C), while increasing fructose concentration did not modify Ppir or Ppin
activity (Fig. 4C). These results suggested that the effect of fructose on Plt production
is mediated by the p/tL operon.When 10 mM glucose (MFG10) or 10 mM succinic acid
(MFS10) were added to MF liquid medium, P activity was significantly lowered
compared with that observed on MF liquid medium (Fig. 4D), suggesting that glucose
or succinic acid antagonized the effect of fructose on operon pl/tL, and consequently, on
PIt biosynthesis.

3.5 The two-component signal system CbrA/CbrB is essential for fructose-

dependent induction of Plt biosynthesis

The CbrA/CbrB system is unique to bacteria of the Pseudomonaceae family. It

integrates various signals and regulates multiple physiological processes involved in

bacterial adaptation to varying environments [34]. To investigate the possible role of
CbrA/CbrB in fructose-dependent Plt induction, strains either deleted for cbrB

[AcbrB(pBBR)] or deleted and complemented wi[[th overexpressed CbrB
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[AcbrB(pBBR-cbrB)] were generated and cultured in MF medium. These genetic
alterations did not alter PA1201 growth in MF medium (Fig. SA). Nonetheless, PIt was
not detected in AchbrB(pBBR) cultures at 24 or 48 hpi, whereas cbrB overexpression
restored Plt expression to wild-type level in the AcbrB(pBBR-cbrB) strain (Fig. 5A).
These results suggested that the CbrA/CbrB system is required for fructose-promoted
PIt biosynthesis.

Similarly, in the MFS10 or MFG10 medium, containing respectively the antagonist
glucose or succinic acid, Plt synthesis was not detectable with AcbrB(pBBR), but was
restored beyond wild-type level with AcbrB(pBBR-chrB), albeit Plt levels in these
media remained below those in MF for all strains (Fig. 5B, C). These observations
suggested that the inhibition exerted by glucose or succinic acid was slightly overcome
by CbrB overexpression, implying that CbrA/CbrB may participate to the
antagonization of fructose-promoted Plt biosynthesis by these nutrients.

3.6 The sRNA CrcZ is essential for fructose-dependent induction of PIt
biosynthesis

The crcZ gene, encoding crcZ sRNA, is located immediately downstream of chrB (Fig.
6A). It has been shown that CbrB could bind the regulatory regions of crcZ and activate
its transcription from RpoN-dependent promoters [35]. To investigate whether crcZ is
required for fructose-dependent Plt biosynthesis, PA1201(pBBR), AcrcZ(pBBR) and
AcrcZ(pBBR-crcZ) strains were constructed and grown in MF medium. In AcreZ(pBBR)
cultures, Plt level was strongly diminished at 24- and 48-hpi compared to
PA1201(pBBR) cultures, whereas in AcrcZ(pBBR) cultures, Plt production was
restored to levels obtained in PA1201(pBBR) control cultures (Fig. 6B).

In MFS10 or MFG10 medium, the Plt level produced by the AcrcZ(pBBR) strain was
significantly lower than that produced by PA1201(pBBR); crcZ overexpression in
AcrcZ(pBBR-crcZ) increased significantly Plt level at 48 hpi in MFS10 medium,
exceeding wild-type Plt level, and to a lesser extend in MFG10 medium (Fig. 6C, D).

These findings suggested that crcZ partly mediates the antagonistic effects of glucose
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and succinate on fructose-induced Plt biosynthesis.

3.7 Hfq is involved in fructose promoting PIt biosynthesis and mediates the
antagonistic effects of succinic acid and glucose on fructose-induced PIt
biosynthesis

Hfq is a pleiotropic regulator notably involved in CCR in Pseudomonas and related
bacterial species [36]. To investigate the possible roles of 4fg in fructose-induced Plt
biosynthesis, strains deleted for Afg (Ahfq) or overexpressing hfg [Ahfg(pBBR-hfg)]
were generated in PA1201 and grown in MF medium. Deletion of 4fg had no significant
impact on Plt level at 24- or 48-hpi (Fig. 7A). Consistently, p/tL promoter-dependent [3-
galactosidase activity in the reporter strain PA1201::Ppu-lacZ at 48 hpi was not
different from that in Ahfg::Ppu-lacZ (Fig. 7B). However, overexpression of Afg in
Ahfq(pBBR-Afq) reduced PIt biosynthesis to a level much lower than that in wild-type
PA1201 (Fig. 7A), indicating an inhibitory effect of Hfq on fructose-induced Ptl
synthesis.

In MFS10 medium, Plt production by the AAifg mutant reached 39.5 mg/(ODgoo.L) at
48 hpi, which was significantly higher than the production achieved by wild-type
PA1201 [8.4 mg/(ODsoo.L); Fig. 7C]. This result indicated that the inhibition of
fructose-induced Plt synthesis by succinic acid required Hfq. Overexpression of 4fg in
Ahfq restored Plt inhibition to wild-type level (Fig. 7C). Consistently, Ppi-dependent
B-galactosidase activity in the reporter strain Ahfg::Ppi-lacZ was significantly higher
than that in PA1201::Ppir-/acZ when cultured in MFS10 (Fig. 7B). Similar trends in Plt
level and Ppi-dependent B-galactosidase activity were observed in MFG10 medium
(Figs. 7B-D). These findings suggest that Hfq mediates the antagonistic effects of
succinate and glucose on fructose-dependent Pt biosynthesis.

3.8 Crec protein is involved in fructose promoting Plt biosynthesis and mediates the
antagonistic effects of succinic acid and glucose on fructose-induced PIt
biosynthesis

The Crc protein can stabilize Hfq binding to the A-rich motifs of target mRNAs to form
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tripartite Hfq—RNA—Crc complexes [37]. In PA1201, the 780-bp crc gene is flanked by
the pyrE gene, encoding an orotate phosphoribosyltransferase, and the gene encoding
DUF4870 domain-containing protein (Fig. 8 A). To investigate the possible role of Crc
in fructose-promoted Plt biosynthesis, strains deleted for crc [Acrce(pBBR)] or
overexpressing crc [Acrc(pBBR-crc)] were constructed in PA1201 and grown in MF.
Plt levels in Acrc was not significantly different from that in PA1201 at 24 and 48 hpi
(Fig. 8B). In contrast, overexpression of crc in Acrc(pBBR-crc) decreased Plt
production below wild-type level. Further, no additive effect was observed on Plt
biosynthesis in the double knockout strain AhfgAcrc, which suggested that these two
gene products acted in the same inhibitory pathway (Fig. S3).

In MFS10 or MFG10 medium, the Plt levels obtained with Acrc at 48 hpi, which were
respectively, 15.4 and 20.7 mg/(ODeoo.L), were significantly higher than that obtained
with PA1201 [2.7 and 7.0 mg/(ODsoo.L), respectively]. Crc overexpression in
Acrc(pBBR-crc) strain restored the inhibition of Plt production observed in wild-type
PA1201 cultured in MFG10 and MFS10 media (Fig. 8C). Thus, the antagonizing effect

of glucose or succinate on fructose-dependent Plt biosynthesis is mediated by Crc.

4. Discussion

The natural metabolite Plt can effectively inhibit the growth of a variety of plant
pathogenic bacteria and fungi, especially oomycetes causing crop diseases that have
high economic impacts [38]. This antimicrobial property makes Plt a promising
candidate for the development of new biopesticides. However, Plt yield in wild-type
Pseudomonas strains is far too low to meet industrial demands. The type of carbon
source and its availability was shown to affect the production of bacterial antimicrobials
in various bacterial genera [39]. The environment and nutrients have been identified as
influential factors for Plt production in Pseudomonas. For example, the co-production
of approximately 150 mg/L of PIt and 500 mg/L of 2,4-diacetylphloroglucinol, another

antimicrobial metabolite, was achieved by flask cultivation in a medium containing
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approximately 2% ethanol [40]; Duffy et al. found that Plt production was stimulated
by Zn**, Co*, and glycerol, but repressed by glucose; adding glucose to NBY medium
could inhibit PIt production by Pseudomonas fluorescens CHAO, while CHAO
produced more Plt using mannitol and glycerol as sole carbon sources [41]. In this study,
we investigated the effects of 11 carbon sources on bacterial growth and Plt production
in PA1201. Our results showed that the nutrient-poor MM medium favored PIt
production. Addition of fructose, mannitol, or glycerol promoted Plt biosynthesis,
whereas addition of glucose or succinic acid enhanced bacterial growth but has no
significant effect on Plt biosynthesis. Importantly, glucose or succinic acid antagonized
fructose-dependent Plt production. Based on these results, we developed the medium
MF and obtained a Plt yield of 190.26 mg/L in wild-type PA1201. These findings
provide new clues to improve Plt titer through medium optimization.

PIt biosynthetic and efflux mechanisms have been well established [11,16,20,21,42].
The regulatory network for Plt biosynthesis, including transcriptional factors, two-
component systems, and QS systems, has also been elucidated in several Pseudomonas
strains [17,43-48]. This network has been used as target to enhance Plt production by
engineering. For example, PIt production in P. protegens H78 was substantially
enhanced from 15 to 214 mg/L by deletion of the »smE gene involved in the Gac/Rsm-
RsmE cascade, /on ATP-dependent protease gene, inhibitor gene pltZ, and inhibitory
sequence in pltR operator region, followed by overexpression of Plt ABC-type
transporter operon pltIJKNOP [12]. A derivative of P. protegens Pf-5, in which 23 types
of rare codons in pltR were substituted with preferred synonymous codons, produced
15-time higher levels of pyoluteorin than wild-type Pf-5 [49].

CCR is a general mechanism that facilitates the catabolism (assimilation) of carbon
from different sources, supports efficient growth, and represses the catabolism of other
potentially usable carbon sources that are less energetically efficient [50]. Thus, CCR
allows bacterial cells to preferentially assimilate a single carbon compound among

multiple carbon sources. In addition, CCR potentially control antibiotic biosynthesis
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indirectly in Pseudomonas spp. [51]. The CCR regulatory cascade is composed of three
layers: the two-component system CbrA/CbrB, the CrcZ/Y sRNAs, and the
translational repressor Crc [28]. Our results clearly demonstrated that fructose promotes
PIt production directly by increasing the transcription of p/tL operon. CCR-associated
regulators are required for fructose-dependent p/tL expression and Plt production. A
more complete understanding of the molecular mechanisms underlying the regulation
of pltL expression by CCR in PA1201 can help optimizing Plt production and its
industrial application.

The two-component CbrA/CbrB system is involved in nutritional adaptation and was
first described in P. aeruginosa as a regulator of hierarchical utilization of various
carbon sources [26]. To date, no orthologous system has been described in other species,
and its activating signals remain elusive, although some authors suggested that it could
include the C:N balance [34]. In this study, we found that at least three carbohydrates,
fructose, mannitol, and glycerol, could promote Plt production. Glucose or succinic
acid antagonized fructose-dependent Plt production. Thus, these carbohydrates are
unlikely the direct activators of the CbrA/CbrB system and further investigation is
necessary to clarify the underlying mechanisms of this regulation. From the current
results, we proposed a working model to explain how different carbohydrates affect Plt
production in PA1201 cells (Fig. 9). In absence of fructose, mannitol, or glycerol, or in
presence of both fructose and glucose or fructose and succinic acid, the CbrA/CbrB
system is not activated, no SRNA CrcZ is expressed, and Hfq and Crc form a two-
protein complex. This complex binds p/tR mRNA, inhibiting PItR protein production,
thereby impeding the initiation of pltL expression. In sole presence of fructose,
mannitol or glycerol, the CbrA/CbrB system is activated and phosphorylated CbrB
binds crcZ promoter to initiate the transcription of CrcZ sRNA. Hfq and Crc proteins
bind CrcZ to form a three-partite complex. This complex loses the capacity to bind p/tR
mRNA, enabling PItR protein translation. PItR dimers activates the promoter of pl/tL

operon, which in turn, initiates Plt biosynthesis (Fig. 9).
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Figure legends:

Figure 1. Plt production by PA1201 strain in different media. (A) Growth kinetics
of PA1201 in KMB, LB, PPM and MM media. (B) Plt production at 24- and 48-hours
post inoculation (hpi). The data are shown as the averages of three technical repeats
with standard deviation. Statistical significance between groups, assessed by ANOVA
followed by Fisher’s protected least significant difference test, are shown as one
asterisk (p <0.05) or two asterisks (p < 0.01).

Figure 2. Fructose promotes Plt production in minimal medium (M). (A) Growth
kinetics of PA1201 in minimal M medium (KH2PO4 4.5 g/L, KoHPO4 10.5 g/L,
(NH4)2S04 2.0 g/L, MgS04.7H20 0.16 g/L, FeSO4.7H>0 0.005 g/L,CaCl>.2H,0 0.011
g/L, MnCl,.4H>0 0.002 g/L), supplemented with 5 mM carbohydrates, as indicated:
Fru: fructose; Mal: maltose; Glu: glucose; Sor:sorbitol; Suc: sucrose; Lac: lactose; Gal:
galactose; Xyl: xylose; Succ: succinic acid. (B) PIt level in PA1201. (C) Plt level at 48
hpi in M medium supplemented with 5-20 mM fructose. The data are shown as the
averages of three technical repeats with standard deviation. Statistical significance
between groups, assessed by ANOVA followed by Fisher’s protected least significant
difference test, are shown as one asterisk (p < 0.05) or two asterisks (p < 0.01).

Figure 3. Glucose or succinic acid antagonizes fructose-induced Plt
biosynthesis.(A) Growth kinetics of PA1201 in MF medium supplemented with 1-10
mM glucose, or (B), 1-10 mM succinic acid. (C) Plt levels at 24- and 48-hpi in MF
medium supplemented with 1-10 mM, or (D), 1-10 mM succinic acid. The data are
shown as the averages of three technical repeats with standard deviation. Statistical
significance between groups, assessed by ANOVA followed by Fisher’s protected least
significant difference test, are shown as one asterisk (p < 0.05), two asterisks (p <0.01),
or three asterisks (p <0.001)

Figure 4. Effects of fructose, glucose, and succinic acid on pltL expression. (A)
PIt gene cluster and the three studied promoters. (B) Representative pictures showing

the colonies carrying different reporter transgenes PA1201-/acZ (negative control),
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PA1201::Ppir-lacZ, PA1201::Ppun-lacZ and PA1201::Ppir-lacZ on the MF agar plate
supplemented with 40 mg/L X-gal. (C) Effects of 5-20 mM fructose on Ppir-, Ppi- and
Pyi-dependent B-galactosidase activity in PA1201 at 48 hpi. (D) Ppi-dependent [3-
galactosidase activity in PA1201 cultured in MF, MFS10, and MFG10 media. The data
are shown as the averages of three technical repeats with standard deviation. Statistical
significance between groups, assessed by ANOVA followed by Fisher’s protected least
significant difference test, are shown as one asterisk (p < 0.05) or two asterisks (p <
0.01).

Figure 5. CbrB positively regulates Plt biosynthesis in PA1201. (A) Growth
kinetics and PIt production by the strains PA1201(pBBR), AchrB(pBBR) and
AcbrB(pBBR-cbrB) at 24- and 48-hpi in MF medium, in (B) MFS medium, and in (C)
MFG medium. The data are shown as the averages of three technical repeats with
standard deviation. Statistical significance between groups, assessed by ANOVA
followed by Fisher’s protected least significant difference test, are shown as one
asterisk (p <0.05) or two asterisks (p < 0.01).

Figure 6. SRNA CrcZ positively regulates Plt biosynthesis in PA1201. (A) cbrA,
cbrB, and crcZ loci on PA1201 chromosome. (B) Growth kinetics and Plt production
of the strains PA1201(pBBR), AcrcZ(pBBR) and AcrcZ(pBBR-crcZ) at 24- and 48-hpi
in MF medium, in (C) MFS10 medium, or in (D) MFG10 medium. The data are shown
as the averages of three technical repeats with standard deviation. Statistical
significance between groups, assessed by ANOVA followed by Fisher’s protected least
significant difference test, are shown as one asterisk (p < 0.05) or two asterisks (p <
0.01).

Figure 7. Role of Hfq in PIt biosynthesis. (A) Plt production by PA1201(pBBR),
Ahfq(pBBR), and Ahfq(pBBR-hfg) at 24- and 48-hpi in MF medium. (B) Ppu-
dependent B-galactosidase activity in strains PA1201 and AAfg cultured in MF, MFG10,
or MFS10 medium. (C) PIlt production by PA1201(pBBR), Ahifg(pBBR) and

Ahfq(pBBR-Afq) at 24- and 48-hpi in MFS10 medium, or in (D) MFG10 medium. The
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data are shown as the averages of three technical repeats with standard deviation.
Statistical significance between groups, assessed by ANOVA followed by Fisher’s
protected least significant difference test, are shown as one asterisk (p < 0.05) or two
asterisks (p < 0.01).

Figure 8. Role of Crc in PIt biosynthesis. (A) crc locus on PA1201 chromosome.
(B)Growth kinetics and Plt production by PA1201(pBBR), Acrc(pBBR), and
Acrc(pBBR-crc) at 24- and 48-hpi in MF medium, or in (C) MFS10 and MFG10 media.
The data are shown as the averages of three technical repeats with standard deviation.
Statistical significance between groups, assessed by ANOVA followed by Fisher’s
protected least significant difference test, are shown as one asterisk (p < 0.05) or two
asterisks (p <0.01).

Figure 9. Model of regulation of pyoluteorin biosynthesis by carbohydrates via
carbon catabolite repression (CCR) mechanism. (A) Plt production is limited in the
absence of fructose, mannitol and glycerol or in the presence of both
fructose/mannitol/glycerol and glucose/succinic acid. (B) Plt production is induced in

the presence of sole fructose/mannitol/glycerol.
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