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Transfer learning enables identification of
multiple types of RNA modifications using
nanopore direct RNA sequencing

You Wu 1, Wenna Shao1, Mengxiao Yan2, Yuqin Wang2, Pengfei Xu1,
Guoqiang Huang1, Xiaofei Li1, Brian D. Gregory 3, Jun Yang 2,4 ,
Hongxia Wang 2,4 & Xiang Yu 1

Nanopore direct RNA sequencing (DRS) has emerged as a powerful tool for
RNA modification identification. However, concurrently detecting multiple
types of modifications in a single DRS sample remains a challenge. Here, we
develop TandemMod, a transferable deep learning framework capable of
detecting multiple types of RNA modifications in single DRS data. To train
high-performanceTandemModmodels, we generate in vitro epitranscriptome
datasets from cDNA libraries, containing thousands of transcripts labeled with
various types of RNA modifications. We validate the performance of Tan-
demMod on both in vitro transcripts and in vivo human cell lines, confirming
its high accuracy for profiling m6A and m5C modification sites. Furthermore,
we perform transfer learning for identifying other modifications such as m7G,
Ψ, and inosine, significantly reducing training data size and running time
without compromising performance. Finally, we apply TandemMod to identify
3 types of RNA modifications in rice grown in different environments,
demonstrating its applicability across species and conditions. In summary, we
provide a resource with ground-truth labels that can serve as benchmark
datasets for nanopore-based modification identification methods, and Tan-
demMod for identifying diverse RNAmodifications using a single DRS sample.

Eukaryotic messenger RNAs (mRNAs) possess multiple types of mod-
ifications such as N6-methyladenosine (m6A)1,2, 5-methylcytosine
(m5C)3, 5-hydroxymethylcytosine (hm5C)4, pseudouridine (Ψ)5,6, and
inosine (I),which isproduced fromA-to-I editing7. Recentfindings have
revealed that these modifications are essential for the normal growth
and development of eukaryotes8–13. For instance, m6A depositions
destabilize specific mRNAs in embryonic stem cells, and aberrant m6A
modifications are associated with various human diseases14–16. In
plants, hyperactivation of a transgenic human m6A demethylation
enzyme FTO in rice and potato increases crop yield and biomass, while

decreasing m5C modification attenuates rice tolerance to high
temperature17,18. Thus, research focused on mRNA modifications is an
important area of inquiry.

Cutting-edge technologies have been developed to illustrate the
complex landscape of the eukaryotic epitranscriptome19–24. Methods
suchasMeRIP-Seq25,m6ACE-Seq26,miCLIP27, GLORI2, Pseudo-seq28 and
BisSeq29, which utilize either antibodies or chemical treatments fol-
lowed by next-generation sequencing (NGS), have gained extensive
use for profiling mRNA modifications. Moreover, RBS-seq has shown
its capacity to simultaneously detect m5C, Ψ, and m1A transcriptome-
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wide based on NGS30. Combining with computational methods, Direct
RNA Sequencing (DRS), developed by Oxford Nanopore Technology
(ONT)31, has revolutionized the field by enabling the identification of
individual mRNA32–45 or tRNA46,47 modifications at single nucleotide
resolution. During nanopore sequencing, modified bases disrupt the
expected current signalwhenpassing through thenanopores, allowing
for the identification of modifications using machine learning
approaches. Current DRS-based methods can be mainly categorized
into comparative and de novo prediction models. Comparative
methods such as DRUMMER48 and xPore39 have demonstrated good
performance but require negative control samples49, limiting their
application scope. De novo prediction models, such as nanom6A50,
m6Anet51, DENA42, Penguin41, are trained on labeled datasets from
either in vitro synthetic sequences or in vivo transcribed mRNAs.
Training sets derived from in vitro synthetic sequences, such as
Curlcake52 and ELIGOS38, provided ground-truth labels for modifica-
tions. Using these datasets, several models for modification detection
have been developed, successfully achieving single-base resolution
modification identification at single transcript level36,50. However,
in vitro synthetic sequences have limited diversity in sequence con-
text, and thus the accuracy of models trained on synthetic sequences
may decease when predicting naturally occurring sequences. Training
datasets obtained from in vivo DRS data exhibit greater sequence
complexity, however, the modification labels deduced from antibody-
based experiments, such as m6A-seq26 and miCLIP27, are ambiguous
given each site has a dynamic modification rate detected by mRNA
DRS reads.

A recent study utilized nanopore DNA sequencing to identify
multiple types of DNA methylations53, but uncovering the epitran-
scriptome landscape with multiple types of RNA modifications using
DRS remains a challenge54. To address this gap, we generated in vitro
epitranscriptome (IVET) datasets from plant cDNA libraries producing
thousands of mRNA transcripts. While numerous RNA modifications
exist in eukaryotic mRNAs, the majority of them are present at low
levels. Notably, m6A, m5C, and m1A are three of the most prevalent
modifications55,56. Therefore, in this study, we generated transcripts
labeled with m6A, m1A and m5C modifications, and developed a DRS-
based Transferable deep learning model of multiple Modification
(TandemMod) with these IVET datasets. The TandemMod models can
identify multiple types of RNA modifications (m6A, m1A, m5C, hm5C,
m7G, I and Ψ) in single eukaryotic DRS data at single-base resolution.
We validated the TandemMod models using both independent syn-
thetic RNA transcripts in vitro with ground-truth labels and human
mRNA transcripts in vivo with labels identified by Illumina-based
methods. Finally, we profiled the epitranscriptomic map of rice RNA
that encompassesmultiple types ofmodifications. Taken together, our
study presented an approach for creating cDNA-library based IVET
datasets, which can serve as benchmark datasets for DRS-based
machine learning methods, and a deep learning model, TandemMod,
for discoveringmultiple types of RNAmodifications in singleDRSdata.

Results
Alterations in DRS features at base level and current level
induced by RNA modifications
In the field of nanopore sequencing, the presence ofmodifications will
cause fluctuations in the current signal, which typically leads to a
decrease in basecalling qualities and an increase in basecalling
errors52,57. Previous studies have shown that basecalling errors can be
utilized for identifying m6A37,52 and Ψ36. In particular, the mean, med-
ian, standard deviation and width of signals from 5-mer motifs have
been used as features by nanom6A50 to identify m6A sites. First, using
in vitro-transcribeddatasets generated in theNookaew lab (denoted as
ELIGOS datasets)38, we calculated these 5 base-level features (mean,
median, standard deviation, length of signals and per-base quality) for
6 types of modified bases (m1A, m6A, m5C, hm5C, m7G and Ψ) using

several motifs as examples and compared them to those that are
unmodified. Our results showed that all of these modification types
caused variations in base-level values and these variations were
modification-specific (Fig. 1a). For instance, the mean and median
signal of m5C, hm5C, m6A, m1A, and m7G were significantly increased
compared to corresponding unmodified bases in the given 5-mer
motif. m7G led to a decrease in standard deviation, while Ψ caused an
increase in standard deviation. The signal length (dwell) of hm5C and
m6Awas significantly longer, while the dwell of m7Gwasmuch shorter.
Additionally, we found that the base quality of hm5C, m5C, m1A and Ψ
was significantly decreased (Fig. 1a). Consistently, the per-read quality
of modified samples dramatically decreased compared to the unmo-
dified sample (Fig. 1b). Notably, the variation patterns of the base
features such as mean depended on sequence context in different
5-mer motifs (Supplementary Fig. 1a). Therefore, the 5-mer sequences
were also considered as an additional base-level feature.

Next, we investigated the impact of modifications on nanopore
current fluctuations. In nanopore sequencing, the electric current
signal level data produced from a nanopore read is referred to as a
squiggle. After basecalling, the raw reads may contain some errors
compared to the reference sequences. Therefore, squiggling is needed
to define a new assignment from squiggles to the reference sequences
(For more details, refer to Methods). After squiggling, we obtained
current signals corresponding to each nucleotide. However, the vary-
ing length of current signals per base poses a challenge for extracting
features at the current level. To address this issue,we performed signal
resampling with spline interpolation to obtain signals of equal length
(100 time points per base in this study) (Supplementary Fig. 1b). The
resampled signals displayed a strong positive correlation with raw
signals (Supplementary Fig. 1c), and therefore can effectively represent
modification features. Current intensity alterations were observed in
modified bases and their neighboring bases (Fig. 1c). The resampled
signals corresponding to each 5-mer sequence exist in a 500-
dimensional space. We applied UMAP58 transformation, a manifold
learning technique utilized for dimensionality reduction, to the
resampled signals, converting them into 2-dimensional data. The
results showed that the representative 5-mer sequences withmodified
and unmodified bases tended to be distributed in different regions
(Fig. 1d). Subsequently, we explored whether modified bases could be
distinguished from the other 3 canonical bases at the current level.Our
results demonstrated that the difference between modified and
unmodified bases was smaller than the difference observed among the
other 3 canonical bases (Supplementary Fig. 1d, e). This indicated that
current intensity can be effectively utilized for modification
identification.

Additionally, we also explored the base-level and current-level
features of 5moU and I in ELIGOS datasets (Supplementary Fig. 2a–d).
For the CAUCAmotif, the mean and median signal, as well as the base
quality, between U and 5moUwere significantly different, while for the
AUGUU motif, the standard deviation (std), signal length (dwell) and
base quality between G and I were remarkably changed. Collectively,
our analysis of various modifications, including m1A, m6A, m5C, hm5C,
m7G, 5moU, Ψ and I, revealed that all of these modifications were
associatedwith notable alterations in both current-level and base-level
features. This highlighted the potential utility of these features for
accurate identification of diverse modifications.

TandemMod: a deep learning frame developed to detect RNA
modifications at single base resolution
After conducting a systematic analysis of individual feature alterations
in DRS data caused by modified bases, we extracted current intensity
with 100 time points, and 6 base-level statistical characteristics (base
type, base quality, mean, std, median and dwell) as features for each
base. We anticipated that the use of multiple features would enhance
the sensitivity and specificity of modification identification, allowing
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Fig. 1 | Systematic analysis of Alterations of DRS features at base level and
current level contributed by RNA modification. a Base-level features extracted
from ELIGOS datasets, which included m1A, m6A, m5C, hm5C, m7G, and Ψ. The
boxplot showing the mean, standard deviation (std), median, width of signals
(dwell) and base quality of each modified base and modification-free bases, which
are in the center of 4 representative 5-mer motifs. The upper and lower limits
represent the 75th and 25th percentiles, respectively, while the center line repre-
sents the median; upper and lower whiskers indicate ±1.5× the interquartile range.

Outliers are not shown in these figures. All statistical tests used two-sidedWilcoxon
tests. Significance levels are: *p < 0.05, **p < 0.01, ***p < 0.001. The exact p values
are provided in the SourceData file.b Base quality distribution of the seven ELIGOS
datasets at read-level. c The normalized current signals from the ELIGOS U/Ψ
dataset in GCUCAmotif.d Visualization of 5-mer signals using Umap under specific
sequence contexts (From left to right, they are AGCCA, UGAGU, ACUAA, and
UUGUA respectively.). Source data are provided as a Source Data file.
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for a more comprehensive and accurate analysis of the presence and
distribution of modifications in various biological systems. To achieve
this, we developed a deep learning framework, TandemMod, which
used 500 features of current signals and 30 base-level features
extracted from 5-mer motifs as input (Fig. 2a). TandemMod predicts
modifications using features from individual reads, thereby providing
information about which reads are modified at a genomic location.

TandemMod consists of 4 main components: a one-dimensional con-
volutional neural network (1D-CNN), a bi-directional long short-term
memory module (bi-LSTM), an attention mechanism, and a classifier
comprising full-connected layers (Fig. 2a and Supplementary Fig. 3).
The 1D-CNN is utilized to extract local features from raw current
intensity signals, while the bi-LSTM module is employed to capture
long-term dependencies between adjacent signals. The attention
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mechanism is used to weight the significance of each feature at dif-
ferent time steps, and the classifier is responsible for making predic-
tions based on the combined information from all features.
TandemMod provides both prediction labels and their corresponding
confident probabilities and can predict modification at both the read
level and the site level.

As m5C and m6A are the most prevalent modifications in eukar-
yotic mRNAs1,55,59, we started with m5C and m6A to explore the per-
formance of TandemMod. We first trained a TandemMod m5C model
onDRSdataset derived from in vitro transcribed sequences containing
all possible 5-mers36 (denoted as Curlcake dataset). The dataset was
divided into training and testing sets at a ratio of 4:1. To improve the
generalization performance of the model, we tested three different
signal normalization methods by comparing the area under receiver
operating characteristic curve (ROC-AUC) on the testing set. From this
analysis, we found that thenormalizationbasedonmedianandmedian
absolute deviation (MMAD) displayed the best performance, achieving
a ROC-AUC higher than 0.99 on the testing set (Supplementary
Fig. 4a). We then evaluated the performance of the trained m5Cmodel
on an independent ELIGOS m5C dataset with a completely different
sequence context and the MMAD normalization method obtained a
ROC-AUC of 0.95, which was much higher than when using min-max
and z-score normalization methods (Supplementary Fig. 4b). We next
investigatedwhether read lengthwould affect themodel performance.
To do this, unmodified and m5C-modified RNAs in vitro transcribed
from synthetic Curlcake sequences with different lengths were used to
produce DRS data, which were utilized for the prediction by Tan-
demMod m5C model. The results showed that the model’s perfor-
mance improved as the read length increased. Keeping reads with a
length greater than 600 improved the ROC-AUC from 0.86 to
0.97 (Fig. 2b).

In addition to identifying modification types, TandemMod also
provides probability predictions for these modifications. We imple-
mented a probability cutoff strategy in read-level predictions to fur-
ther improve the performance of the TandemMod model and
minimize false positives. First, we examined the distribution of prob-
abilities assigned to Curlcake and independent ELIGOS dataset’s read-
level predictions. The modified bases are predicted with probabilities
close to 1 and the unmodified ones are predicted with probabilities
close to 0 (Fig. 2c), indicating that most of the predictions were highly
credible. Next, we tested a range of paired probability cutoff values,
from0.5/0.5 to 0.1/0.9, where predictions with probabilities below the
first cutoff were considered unmodified, those above the second cut-
off were considered modified, and the rest were discarded. From this
analysis, we found that when adopting the 0.1/0.9 paired cutoff,
approximately 87.5% and 75% of total instances were retained in the
Curlcake and ELIGOS datasets, respectively (Supplementary Fig. 4c).
We evaluated the performance of our probability cutoff strategy on
both Curlcake and ELIGOS m5C datasets. Using a probability cutoff of
0.1/0.9 improved the ROC-AUC from 0.99 to 1 in the Curlcake dataset,
and from 0.95 to 0.98 in ELIGOS dataset (Fig. 2d and Supplementary
Fig. 4d). To investigate whether discarded instances exhibit enrich-
ment for specific sequence motifs, we conducted an analysis on the

proportion of discarded reads using cutoff thresholds of 0.3/0.7 for all
256 5-mer motifs (Supplementary Fig. 5). Additionally, we examined
the distribution of predicted modification probabilities for each motif
(Supplementary Figs. 6, 7). The results indicate that discarded instan-
ces were uniformly distributed across the 256 motifs. Although this
probability cutoff strategy resulted in a reduction of total effective
reads, the trade-off betweenprecision and recallwas acceptable, as the
accuracy of retained predictions was significantly improved.

Superior performance of TandemMod compared to other
available tools
We next assessed the performance of the TandemMod model by
comparing it to classic machine learning algorithms. To do this, we
trained four m5C models and four m6A models using TandemMod,
XGBoost, support vector machine (SVM) and k-nearest neighbor
(KNN), respectively, on the same features extracted from the Curlcake
training set. The performance of each model on the Curlcake testing
setwas evaluatedbasedon the accuracy of each individualmotif. In the
case of m6A identification on the Curlcake testing dataset, Tandem-
Mod outperformed the other algorithms with an accuracy of 0.90,
while XGBoost, SVM and KNN achieved accuracies of 0.84, 0.80, and
0.73, respectively (Supplementary Fig. 4e). Similarly, for m5C identifi-
cation, TandemModdemonstrated best performancewith an accuracy
of 0.95, compared to XGBoost (0.90), SVM (0.76) and KNN (0.88) on
the Curlcake testing dataset (Supplementary Fig. 4f). This comparison
highlighted the effectiveness of the deep learning-based model Tan-
demMod in identifying modifications using DRS data.

The modification rate of modified sites from in vivo RNA mole-
cules is dynamic5 and shows high levels of variation across conditions
and samples39. To investigate whether TandemMod can accurately
identify samples with different levels of modification rate, we gener-
ated DRS data with different proportions of modified reads39. Specifi-
cally, we sampled reads randomly from the ELIGOS dataset to create
mixtures with pre-defined stoichiometry of 0%, 20%, 40%, 60%, 80%
and 100% of reads with m5C sites. We then processed these samples
with TandemMod and compared the results to those obtained using
tombo60 and xPore39. The performance was evaluated in the form of
the consistency of site-wise modification rates predicted by the three
tools with the ground truthmodification rates. (Fig. 2e). For xPore, the
0-stoichiometry mixture was used as the needed negative control
sample. TandemMod successfully identified m5C sites in both low-
stoichiometry and high-stoichiometry samples. The results showed a
strong positive correlation between predicted modification stoichio-
metry and the ground truth (Pearson r = 0.956), outperforming
tombo60 (Pearson r = 0.495) and xPore (Pearson r = 0.712). As a denovo
prediction model, TandemMod required no negative control samples
and can accurately predict samples with varying modification rates.

One of the advantages of DRS-based modification detection
method is that it can predict nanopore modifications at the read level.
To evaluate the read-level performance of TandemMod, we compare
the TandemMod m6A model against tombo60, nanom6A50 and
m6Anet51 using labeled reads from ELIGOS m6A dataset38. On the ELI-
GOS RRACH (R–A or G, H–A, C or U) motif, TandemMod, nanom6A

Fig. 2 | TandemModmodel and performance evaluation on publisheddatasets.
a Schematic of TandemModmodelwith data preprocessing,model pretraining and
transfer learning. b ROC curve and PR curve showing the performance for m5C
identification using reads with different lengths. c The distribution of predicted
modification probabilities by the TandemMod model on the ELIGOS dataset.
d Performance for m5C identification model on ELIGOS dataset using different
cutoff values. e Performance comparison of TandemMod, tombo and xPore in data
containing 0%, 20%, 40%, 60%, 80%, and 100% m5C-modified samples (n = 2000).
The upper and lower limits represent the 75th and 25th percentiles, respectively,
while the center line represents the median; upper and lower whiskers indicate
±1.5× the interquartile range. f Boxplot showing the error between the predicted

level and the ground truth level under different stoichiometries (n = 2000). The
datasets used in this analysis were mixtured from the ELIGOS-m5C dataset and the
ELIGOS-normal C dataset. The TandemMod m5C model achieved low error when
predicting sites with modification levels ranging from 0.05 to 0.3. The upper and
lower limits represent the 75th and 25th percentiles, respectively, while the center
line represents the median; upper and lower whiskers indicate ±1.5× the inter-
quartile range. Outliers are not shown in these figures. g ROC curve and PR curve
showing the read-level performance comparison of TandemMod, nanom6A and
tombo in RRACH motifs. h ROC curve and PR curve showing the read-level per-
formance comparison of TandemMod, m6anet and tombo in DRACH motifs.
Source data are provided as a Source Data file.
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and tombo achieved a ROC-AUC of 0.96, 0.88 and 0.52, respectively
(Fig. 2g). On the ELIGOS DRACH (D–A, G, or U) motif, TandemMod
achieved a ROC-AUC of 0.95, higher than m6Anet with ROC-AUC of
0.71 and tombo with ROC-AUC of 0.64 (Fig. 2h). These results sug-
gested that, training with in vitro DRS dataset, TandemMod provided
the most accurate predictions at the read level among existing tools.

To further control false positive rate, we employ a two-step cutoff
strategy to remove low-confidence sites. In theTandemModmodel, we
added a softmax transformation to the output layer to generate read-
level probabilities as well as the prediction labels. In the first step, we
employed a read-level probability threshold cutoff to remove low-
confidence reads. Then TandemMod aggregated read-level predic-
tions to generate site-level predictions and applied a site-level mod-
ification ratio cutoff to further remove false positives. By
implementing these two steps, TandemMod ensures a rigorous and
effective approach to minimizing false positives in modification
detection tasks, resulting inmore reliable and accurate predictions. To
systematically investigate the model performance on datasets with
different proportions of modified reads, we generated mixed samples
fromELIGOSdatawithm5C ratio ranging from0 to 1with a step of 0.05
and evaluated the site-level performanceofTandemMod. The site-wise
modification rates predicted by TandemMod showed a gradually
increase in these samples, consistent with the ground truth (Supple-
mentary Fig. 8a). We then evaluated the error of modification rate
between the predicted modification level and ground truth (Fig. 2f).
When predicting samples with a modification level of 0, the FPR was
~0.05, and when predicting high-level modification sites, TandemMod
exhibited a false negative rate (FNR) of ~0.1. However, when predicting
sites with modification levels ranging from 0.05 to 0.3, the predicted
modification level closely alignswith the ground truth. This outcome is
attributed to the offsetting effect of false positives and false negatives.
We further explored TandemMod’s performance at site resolution
with both balanced and unbalanced datasets, evaluating the impact of
site-level cutoff values on the true positive rate (TPR) (Supplementary
Fig. 8b–d). The TPRs dropped significantly when the site-level cutoff
approached the ground truthmodification level across all threemixed
samples. This indicates that to achieve a high TPR, the site-level cutoff
value should be lower than the true modification rate. We also eval-
uated the classifier’s precision for each site and observed a decrease in
precision in samples with a low m5C rate, alongside a progressive
improvement in precision as the modification rate increased (Sup-
plementary Fig. 8e). To explorewhether the probability cutoff strategy
adapted in this study could improve the model performance on
unbalanced data, we adjusted the probability cutoff from the default
0.5-0.5 to 0.1-0.9 and found that the precision significantly improved
on these samples (Supplementary Fig. 8f). For the unbalanced sample
with a m5C rate of 0.05, the mean precision improved from
0.37 to 0.65.

In vitro epitranscriptome dataset with increased sequence
diversity improved the prediction accuracy of TandemMod
Asmentioned previously, DRS training sets for modification detection
can be constructed either using RNAs in vitro transcribed from syn-
thetic sequences or in vivo RNA transcripts42.

The drawback of RNAs transcribed in vitro from synthetic
sequences is the limited diversity of sequence contexts. These
sequences are unable to cover all possible sequence contexts, posing a
challenge in representing the full range of natural sequences. To
address these limitations, we constructed four DRS training sets (m1A,
m6A, m5C and unmodified) by sequencing thousands of transcripts
produced from rice cDNA library containing T7 promoter (Fig. 3a and
methods), which we termed in vitro epitranscriptome dataset (IVET).
Sequencing results for these datasets showed that the sequencing
quality scores of the unmodified samplewere high, with ameanquality
score of over 15 (Supplementary Fig. 9a, b). In contrast, the other 3

modified samples exhibited slightly lower quality scores, which was
consistent with the previous findings that modifications decrease the
sequencing quality38 (Fig. 1b). Overall, the sequencing qualities were
sufficient for further analysis. In total, transcripts with different con-
texts from 5260 genes in m1A-modified samples, 4638 genes in
m6A-modified samples, 5232 genes in m5C-modified samples, and 3119
genes in unmodified-samples, were detected, respectively. Among
them, 2473 genes were in vitro transcribed into RNAs with similar
abundance in all four samples (Fig. 3b and Supplementary Fig. 9c).
Next, we examined the sequence diversity of k-mers among the IVET,
Curlcake and ELIGOS datasets, to determine their coverage of all
possible k-mer combinations (Fig. 3c). All three datasets are capable of
covering 100% of all possible 5-mers. In the Curlcake and ELIGOS
datasets, the coverage of 7-mer motifs decreased to 45.4% and 44.6%,
and the coverage of 9-mer motifs decreased to 3.6% and 3.9%,
respectively. In contrast, IVET datasets are able to cover all of the
7-mers and 90% of all 9-mers. Furthermore, when we randomly sam-
pled different numbers of genes from IVET and calculated the
sequence diversity, we found that when the number of genes reached
1400, nearly 90%of all possible combinations of 9-mer sequenceswere
covered by IVET datasets (Supplementary Fig. 9d).

To construct modification detection models for m1A, m6A and
m5C, we extracted features from the 2473 genes that were common to
all four samples in IVET datasets. The datasets were randomly split into
training sets (80%) and testing sets (20%). The training sets exhibit a
high level of sequence complexity, thereby qualifying them as suitable
and representative training resources (Supplementary Fig. 9e). We
trained m1A, m6A, and m5C detection models on their respective
training sets and evaluated their performance using ROC-AUC,
achieving a range of 0.90 to 0.95 on the IVET testing sets. After
applying the probability cutoff previously determined (Fig. 2d), the
ROC-AUC improved to 0.97–0.99 (Fig. 3d–f). We further assessed the
generalization performance of the trained models on untrained genes
by conducting testing on the reserved genes, whose sequences were
not encountered during the training phase. The TandemMod models
exhibited remarkable precision on the untrained genes (Supplemen-
tary Fig. 10a–c), affirming that they can attain high accuracy even in
novel sequence contexts. This suggested their potential in identifying
modifications in new species. To further investigate whether sys-
tematic errors in DRS data caused by different devices would affect
model performance, we tested the m1A model on the ELIGOS dataset
and the m6A and m5C models on the Curlcake dataset. The IVET
datasets were produced using the ONT GridION platform, while the
Curlcake datasets were generated using both GridION and MinION
platforms. Additionally, the ELIGOS datasets were exclusively gener-
ated on the MinION platform. The results showed a slight decrease in
accuracy for the m6A model, while the other two models still main-
tained high accuracy (Supplementary Fig. 10d–f), suggesting that
pretrained TandemModmodels can be applied to DRS data generated
from different equipment and platforms.

Additionally, we trained TandemMod models on the IVET and
Curlcake training sets, respectively, and compared their performance
on the ELIGOS dataset. The m6A model trained on the IVET dataset
outperformed the model trained on the Curlcake dataset by 2%
(Fig. 3g) in terms of ROC-AUC, while the m5C model showed a 1%
improvement (Fig. 3h). Overall, the performance of TandemMod was
further improvedwhen trained on the IVET dataset, demonstrating the
potential of the IVET datasets as a valuable resource for training deep
learning models to detect RNA modifications.

Transfer learning of TandemMod for detecting additional types
of RNA modifications
Using DRS data, it is possible to achieve high-precision detection of
RNA modifications through deep learning. However, this approach
requires a large amount of training data that can be costly and time-
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consuming. Therefore, we aimed to develop a cost-efficient and time-
efficient method capable of identifying multiple types of RNA mod-
ifications using a small amount of DRS data. Transfer learning is a
machine learning strategy where a model developed for a task can be
reused on a second task with proper adjustment. Transfer leaning has
been successfully applied to computer vision and natural language
processing and has recently been used to deal with biological

problems61–65. Different types of modification detection tasks are
similar to each other and are naturally suitable for transfer learning.
Therefore, we explored whether transfer learning could be applied to
DRS data to achieve the detection for multiple types of RNA mod-
ifications. To do this, we trained TandemMod on the IVET m5C dataset
to obtain a pretrainedmodel. In the TandemModmodel, the top layers
act as a feature extractor while the bottom layers act as a classifier.
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Thus,we froze the top layers of the pretrainedmodel and retrained the
bottom layers on ELIGOS training sets (hm5C, m7G, Ψ and I) to mini-
mize the classification error (Fig. 2a). After 2 epochs, all three models
achieved high accuracy, with the hm5C model reaching a ROC-AUC of
0.98 (Fig. 4a), them7Gmodel reaching a ROC-AUCof 0.95 (Fig. 4b), the

Ψ model reaching a ROC-AUC of 0.96 (Fig. 4c), and the I model
reaching a ROC-AUC of 0.97 (Fig. 4d).

Next, we performed a systematic analysis to quantitively measure
the classification performance, required training data, and computa-
tional resource utilization of transfer learning from TandemMod m5C

Fig. 4 | Multiple types of RNA modifications identified by TandemMod. ROC
curve and PR curve showing the performance evaluation of m7G model (a), hm5C
model (b), Ψ model (c) and Inosine model (d) transferred from m5C model and
tested on ELIGOSdatasets. eComparison of the running times between the transfer
learning mode and training from scratch mode of TandemMod. The running time
of transfer learning increases gradually with the increase in batch size, as compared
to training fromscratch. fTheROC-AUCperformanceof the transfer learningmode
and training from scratch mode of TandemMod was evaluated. In the transfer

learningprocess, a pretrainedm6Amodelwas retrainedon IVETdatasets to obtain a
m5C model. Meanwhile, the training from scratch process involved training a m5C
model directly on the IVET dataset. It was observed that the transfer learning
approach achieved higher performance levels more rapidly compared to training
from scratch. g The ROC-AUC performance comparison between the transfer
learningmode and training fromscratchmodeof TandemModusing different sizes
of training data. It is observed that the transfer learning approach achieves higher
AUC with less training data. Source data are provided as a Source Data file.

Fig. 3 | TrainingTandemModmodels on IVETdatasetswith increased sequence
diversity further improved the performance. a Flowcharts illustrating the con-
struction of IVET datasets. In the in vitro transcription step, canonical nucleotides
were replaced with modified nucleotides (m1ATP, m6ATP, and m5CTP). Altogether,
three modified samples and one control sample were transcribed from the rice
cDNA library.bVenndiagram showing the commonRNAs among four IVT samples.
c Bar plots showing sequence coverage in the three datasets in terms of the pro-
portion ofmotif occurrences in each dataset to all possible 3-mer, 5-mer, 7-mer and

9-mer motifs, respectively. ROC curve and PR curve showing the performance
evaluation of the m1A model (d), m6A model (e) and m5C model (f) trained on the
IVET training sets and tested on the IVET testing sets, respectively. gROCcurve and
PR curve showing the performance comparison ofm6Amodels trained on IVET and
Curlcake, both tested on the same ELIGOS testing set. h ROC curve and PR curve
showing theperformancecomparisonofm5Cmodels trainedon IVETandCurlcake,
both tested on the same ELIGOS testing set. Source data are provided as a Source
Data file.
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model for m6A detection, compared to standard instance of Tan-
demMod m6A model. Firstly, we recorded the training time for indi-
vidual batches under two scenarios: transfer learning with pretrained
TandemModmodels and training from scratch. The results illustrate a
significantly reduced training time per batch in the case of transfer
learning compared to de novo training (Fig. 4e). We also evaluated the
efficiency regarding the amount of training data required when
transferring a pretrained model to a new modification type versus
starting the training from scratch. Our findings demonstrate that
transferring a pretrained model to new dataset demands considerably
less training data without compromising performance (Fig. 4f, g).
Furthermore, we assessed the performance of the model across vary-
ing training epochs. This evaluation helped us understand the rate at
which the model learns new modifications under both transfer learn-
ing and de novo training scenarios. The ROC and PR curves indicate
that transfer learning not only reduces the computational resources
and data requirements but also maintains a high standard of accuracy
and efficiency (Fig. 4e, f).

In real-world modification detection tasks, high false positive rate
would significantly reduce the reliability and accuracy of the model
since the number of unmodified sites is usually much larger than that
of modified sites. Thus, to ensure the reliability and accuracy of our
models, including m1A, m6A, m5C, hm5C, m7G, I, and Ψ, we evaluated
their false positive rates by testing them on the modification-free IVET
dataset. The results (Supplementary Fig. 11a) showed that the false
positive rates of these models were less than 10% (except for the Ψ
model, which was less than 20%), indicating high reliability and accu-
racy of these models.

To investigate how other types of modifications influence the
performance of pre-trained TandemMod on a givenmodification, we
first tested the performance of TandemMod m6A model on A sites
from the IVET-m5C dataset and TandemMod-m5C model on C sites
from the IVET m6A and m1A datasets. The results showed that the
performance of TandemMod m6A model was not significantly
affected by the upstream or downstream m5C sites (from −10 to
10 nt), except for the closest C (+1 nt); Similarly, the performance of
TandemMod-m5C model on C sites was not attenuated by the
upstream or downstream m6A or m1A sites (from −10 to 10 nt)
(Supplementary Fig. 12).

Next, we further explored how nearby modifications might influ-
ence the predictions using in vivo data. Yeast rRNA molecules are
known to contain a variety of well-documentedmodification sites, and
both the proportions and types of these modifications have been
extensively annotated66,67. To assess how neighboring modifications
impact TandemMod predictions, we utilized Direct RNA Sequencing
(DRS) data for yeast rRNA. In our analysis, we initially applied the
TandemMod m5C model to yeast 25 s rRNA, which spans 3389 base
pairs, to predict all the C sites. We then calculated the overall FPR for
the C sites within the 25s rRNA (Supplementary Fig. 13a, b). Interest-
ingly, weobserved that the FPRs forCbases adjacent tomodifiedbases
and those adjacent to unmodified bases did not exhibit significant
differences. Additionally, we conducted an in-depth analysis of the
distribution of predicted modification probabilities for C bases in
proximity to modifications. The majority of these predicted mod-
ification probabilities were found to be close to 0 (Supplementary
Fig. 13c–e), indicating a high level of confidence in their being unmo-
dified. However, we did observe some sites that were somewhat
influenced by nearby modifications (Supplementary Fig. 13f), which
resulted in a slightly elevated false positive rate. The TandemModm6A
model exhibited similar results (Supplementary Fig. 13h–l), further
validating the robustness of TandemMod to various other types of
modifications. This comprehensive analysis suggests that neighboring
modifications in yeast rRNA have a limited impact on the overall false
positive rate of TandemMod predictions. This characteristic guaran-
tees that TandemMod is applicable to real-world RNA modifications.

We next investigated the feature extraction ability of the Tan-
demMod model by comparing the input and output features. We
visualized the current features of the EILGOS dataset for 6 different
modifications before and after being fed into the TandemMod model.
The raw current features of the 6 modifications were mixed and diffi-
cult to distinguish (Supplementary Fig. 11b). However, after being
processed by the feature extractor of TandemMod, the different
modifications tended to cluster together in distinct areas (Supple-
mentary Fig. 11c). Specifically, m7G and Ψ clustered into separate
groups, whilem5C and hm5Cwere grouped together, andm1A andm6A
baseswere also grouped together. This indicated that the TandemMod
model successfully captured modification-related features while
ignoring sequence-related features. This is a significant advantage, as it
enables the model to differentiate modifications based on their fun-
damental patterns, regardless of the sequence contexts. This property
allows the model to generalize effectively to new sequence contexts
and species without the need for extensive training data. We con-
ducted further evaluations on the feature importance learned by
TandemMod regarding the five input bases (Supplementary Fig. 12d
andMethods). The results revealed that the TandemModmodel places
greater emphasis on the centered base compared to the neighboring
bases. This observation further supports the notion that TandemMod
tends to be less influenced by neighboring modified bases.

In this study, we have demonstrated that TandemMod, through
the incorporation of transfer learning, can effectively achieve detec-
tion of multiple types of RNA modifications with high accuracy. By
leveraging pre-trained models on new tasks, we can improve the per-
formance of our models for detecting specific RNAmodifications. The
ability of TandemMod to effectively extract relevant features from
RNA sequences has led to improved performance compared to tradi-
tional machine learning approaches.

Validation of TandemMod’s performance on detecting m6A and
m5C sites in human cell lines
To testwhether TandemModmodels canbe generalized to in vivoDRS
data from new species, we used several human cell lines (two mod-
ification writer knockout samples and five WT samples) to further
validate the reliability of TandemMod. To begin, we used the DRS data
from both wild-type (WT) and the RNA methyltransferase METTL3
knockout (KO) HEK293T cells from the Singapore Nanopore-
Expression project68 to identify m6A sites. The results showed a sig-
nificant reduction in the m6A/A ratio at both the read and site levels
(Fig. 5a, b). As expected, we observed a decreased m6A/A ratio at the
gene level in METTL3-KO sample compared to the WT sample (Sup-
plementary Fig. 14a). TandemMod predicted A sites within the
sequence context NNANN and the sites identified as m6A-modified in
the WT sample are enriched in canonical DRACH motif (Fig. 5c). Fur-
thermore, the most frequent sequence motif of predicted m6A sites
was GGACT, consistent withm6Anet results51. We then focused on site
1216 of the ACTB transcript and site 1339 of the BSG transcript, which
were reported as known m6A sites69. According to TandemMod pre-
dictions, the m6A/A ratio at site 1216 of the ACTB transcript was 50.8%
and 7.7% in wild-type and METTL3-KO samples, respectively. Further-
more, the m6A/A ratio at site 1339 of the BSG transcript was 73.1% and
15.8% in wild-type andMETTL3-KO samples, respectively (Fig. 5g). The
top 30most significantly differentiallym6A-modified genes inMETTL3-
KO and WT HEK293T cells were further examined (Supplementary
Fig. 14c). Among these genes, some were related to RNA processing
such as SF3B4, other genes encoded ribosomal proteins such as
MRPL54, or served as transcription factors such as ZNF207. To further
evaluate the reliability of our method, we applied TandemMod to
human lung adenocarcinomacells (A549), colon cancer cells (HCT116),
breast cancer cells (MCF7), liver cancer cells (HEPG2), and leukemia
cells (K562)68 to detect m6A sites (Fig. 5h–l). These predicted results
consistently matched the DRACH motif, with the most frequent motif
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being GGACT, which further validated the reliability of the Tandem-
Mod model. We further conducted a comparative analysis of m6A
levels across different cell lines (Supplementary Fig. 14d), and
observed an overall similarity in m6A modification rates.

To further evaluate TandemMod performance on in vivo sample,
we compared the performance of TandemMod with nanom6A and
m6Anet on the detection of m6A sites in the aforementioned K562 cell

line. Peaks from the MeRIP-seq70 of K562 cell line were used as ground
truth to evaluate the model performance. As nanom6A was designed
for RRACH motifs and m6Anet was designed for DRACH motifs, we
extracted RRACH motifs and DRACH motifs from the K562 DRS data,
and compared them with nanom6A and m6Anet, respectively. Tan-
demMod achieved a ROC-AUC of 0.69 on RRACH motifs and a ROC-
AUC of 0.67 on DRACH motifs (Fig. 5m, n), outperforming both
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nanom6A and m6anet. We also compared the predicted m6A sites
from the HEK293T cell line with m6ACE-seq26 and miCLIP27 data from
the same cell line. We used the 12050m6A sites identified bymiCLIP as
ground truth, and compared the overlap with TandemMod predic-
tions, m6ACE-seq and randomly selected A sites. Out of the reported
12,050 m6A sites, TandemMod successfully identified 1,183. Notably,
the overlap ratio between TandemMod predictions and miCLIP data
was found tobe comparatively highwhen compared tom6ACE-seq and
randomly selected A sites from DRACH motifs.

We then used DRS data from both WT and the RNA methyl-
transferase NSUN2-KO HeLa cells from bioproject PRJNA87202771 to
identify m5C sites. TandemMod also identified significantly decreased
m5C/C ratio at both read level and site level in the NSUN2-KO sample
(Fig. 5d, e). We observed a decreased m5C/C ratio at the gene level in
the NSUN2-KO sample (Supplementary Fig. 14b). We observed an UA-
rich sequence logo enrichment (Fig. 5f) around differential m5C sites,
which is consistent with published bisulfite sequencing results72. In
conclusion, the results demonstrated the effectivenessof TandemMod
in accurately identifying modification sites across species and tissues
with diverse genetic backgrounds. Its generalization highlighted its
potential as a valuable tool for investigating methylation patterns and
understanding regulatory mechanisms in various biological contexts.

TandemMod revealed the epitranscriptome landscape of rice
with multiple types of RNA modifications
Current advances revealed thatm6A, m5C, andΨ are quite abundant in
plant transcriptomes73. To explore the distribution of multiple RNA
modifications on rice transcripts and examinehow thesemodifications
respond to environmental stressors, we carried out nanopore
sequencing on rice samples subjected to high-salinity conditions
(100mM NaCl treatment), as well as on control (CK) samples under
normal conditions and obtained 462,842 and 475,699 DRS reads in
NaCl and CK samples, respectively. We employed the TandemMod
models to identify m6A, m5C and Ψ modifications across the entire
transcriptome of both treated and control samples. TandemMod
identified 26,934 m6A sites across 7981 genes, 37,405 m5C sites across
6197 genes and 4630 Ψ sites across 2588 genes in CK sample (Fig. 6a,
Supplementary Data 1, 2). The majority of modified genes possessed
1–4 modified sites (Supplementary Fig. 15d–g). To validate our find-
ings, we compared the identified m6A sites with those from a previous
m6A-seq study17. We found that 70% (5585/7981) of the predicted
m6A-modified genes and 43.3% (11660/26934) of the predicted m6A
sites were covered bym6A-seq (Supplementary Fig. 15a). Furthermore,
to assess whether TandemMod model trained on the IVET datasets
could performs better than the model trained on the Curlcake dataset
on biological sample. We compared the top 100, 500, 1000, 2000,
5000, and 10,000 predicted m6A sites from models trained on IVET
and Curlcake datasets with the aforementionedm6A-seq. The analysis
showed the topm6A sites predicted by TandomMod trained from IVET
libraries covered higher proportion of m6A-seq-validated sites as

compared to those predicted by TandomMod trained from Curlcake
(Fig. 6b). This finding suggested that the increased sequence com-
plexity in IVET further improved the performance of TandemMod in
biological samples. Compared to m6A-seq, TandemMod offered pre-
dictionswith single-base resolution (Fig. 6c), allowing formore precise
identification and mapping of exact RNA modification sites in the rice
transcriptome.

The predicted m6A sites were found to be enriched in the DRACH
motif (Fig. 6d left panel). Similarly, the predictedm5C sites displayed a
UA-rich enrichment (Fig. 6d right panel), which is a known character-
istic of m5Cmodificationmotif. The TandemModmodels were trained
on all of the motifs, allowing them to discover novel modification
motifs. In addition to the DRACH motif, we found that m6A modifica-
tions were also enriched in the AGA motif based on the prediction
results (Supplementary Fig. 15h), which was also revealed by a recent
study in plant74. This capacity to uncover new motifs can expand our
understanding of the diversity and complexity of RNA modification
patterns. The distribution of predictedm6A andm5C sites showed that
m6A had a preferred distribution near the stop codon and the 3’ UTR
region (Fig. 6e left panel) whilem5C tended to be present near the start
codon (Fig. 6e right panel), which was consistent with previous
results75,76 and further validated the reliability of our approach.

Next, we explored which genes tended to contain high frequency
of transcripts containing both m6A and m5C modification in rice under
normal condition. To do this, we further identified 4597 mRNAs with
high-confidence m6A sites (modification rate >0.5) and 3945 mRNAs
with high-confidence m5C sites (modification rate >0.5). Among these
mRNAs, 2394 possess both m6A sites and m5C sites (Supplementary
Fig. 15k). Subsequently, we investigated the frequency of co-occurrence
of m6A and m5C at the same long transcript for each gene. Genes that
containing 30% of mRNA transcripts with occurrence of at least one
m6A and at least onem5Cweremost abundant (Supplementary Fig. 15l).
For instance, we identified 58 out of 184 mRNA reads from
LOC_Os03g52840.1 gene contained both one m6A and one m5C mod-
ification, while 7 out of 41 mRNA reads from LOC_Os03g20700.1 genes
showed m6A and m5C co-occurrence (Fig. 6h, i).

To identify differentiallymodified sites across the high-salinity and
control conditions, we conducted a Chi-square test to compare them6A
andm5C sites. Genes containing sites with a p value less than 0.05 were
considered to exhibit differential modification. In total, we identified
363 genes with up-regulated m6A-modified sites, and 865 genes with
down-regulated m6A-modified sites (Supplementary Fig. 15b, c, Sup-
plementary Data 3). Meanwhile, we found 215 genes with up-regulated
m5C-modified sites, and 1038 genes with down-regulatedm5C-modified
sites (Supplementary Fig. 15i-j, Supplementary Data 4). Gene Ontology
(GO) analysis was conducted on all differentialm6A-modified genes and
m5C-modified genes in rice revealing significant enrichment in biolo-
gical processes related to response to abiotic stimuli, various external
stimuli, and stress (Fig. 6f, g and Supplementary Fig. 16). The top dif-
ferentially m6A-modified genes and m5C-modified genes, highlighting

Fig. 5 | Validation of TandemMod on various human cell lines. a, bModification
rate of METTL3-KO and WT HEK293T samples at read level (n = 1520 for WT,
n = 1860 forMETTL3 KO) and site level (n = 11406 for WT, n = 15099 forMETTL3
KO). The upper and lower limits represent the 75th and 25th percentiles, respec-
tively, while the center line represents the median; upper and lower whiskers
indicate ±1.5× the interquartile range. Outliers are not shown in these figures.
c Enriched sequence motif of identified m6A sites in the WT HEK293T sample.
d, e Modification rate of NSUN2-KO and WT HeLa samples at read level (n = 19980
for WT, n = 20204 for NSUN2 KO) and site level (n = 76664 for WT, n = 86837 for
NSUN2 KO). The upper and lower limits represent the 75th and 25th percentiles,
respectively, while the center line represents themedian; upper and lower whiskers
indicate ±1.5× the interquartile range. Outliers are not shown in these figures.
f Enriched sequence motif of identified m5C sites in the WT HeLa sample.
g Modification rates of the known m6A-modified sites from ACTB and BSG mRNA

transcripts predicted by TandemMod in WT and METTL3-KO samples. Top 10
m6A-modified motifs identified by TandemMod in 5 cell lines A549 (h), HCT116 (i),
MCF7 (j), HEPG2 (k) and K562 (l), respectively. The red bars represent the DRACH
motifs.m Performance comparison of TandemMod and nanom6A on K562 RRACH
motifs. Peaks fromMeRIP-seqwere used as ground truth. A randomclassifierwhich
randomly generated a modification probability for each input was used as null
control for evaluate the model performance. n Performance comparison of Tan-
demMod andm6Anet on K562 DRACHmotifs. Peaks fromMeRIP-seq were used as
ground truth. A random classifier which randomly generated a modification
probability for each input was used as null control for evaluate the model perfor-
mance.oValidation of TandemModonhumanHEK293T cell line. Sites frommiCLIP
were used as ground truth. Random sites and sites from m6ACE-seq were utilized
for comparison. Source data are provided as a Source Data file.
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the most significant changes of modification rate in these genes under
high-salinity stress. In total, these observations provide further evi-
dence for the importance of m6A and m5C modifications in cellular
responses under high-salinity stress.

Discussion
Nanopore-based modification detection methods face limitations due
to the restricted sequence diversity in in vitro synthetic sequences and

the absence of reliable labels in in vivo transcribedmRNAs. To address
these limitations, we constructed m6A, m1A, and m5C IVET libraries
from rice cDNA library producing thousands of transcripts labeled
with given modifications for nanopore DRS, providing important
resources to serve as benchmark datasets for DRS-based machine-
learning methods. Subsequently, we developed a deep learning fra-
mework, TandemMod, which is capable of identifying multiple types
of RNA modifications in eukaryote transcriptomes, including m6A,
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m1A, m5C, hm5C, m7G, I, andΨ (Figs. 2–4). For each base, we extracted
current intensity with 100 time points and base-level characteristics,
including base type, base quality, mean, standard deviation, median
and signal length (Fig. 1). TandemMod took the features of the central
base and its two flanking bases on each side as input for training.
Although mismatch frequencies, insertion frequencies and deletion
frequencies can be used to indicate the presence ofmodifications, this
approach cannot identify modifications at the read level. Therefore,
these features were not considered in this work. The identification
using multiple features associated with modified base and their
neighboring bases could potentially enhance the interpretability of the
results, and provide valuable insights into the biological implications
of the identifiedmodification sites. Our method provides an approach
for detecting RNA modifications with high accuracy and without
requiring negative control samples, making it a useful tool for RNA
modification research.

The accuracy and reliability of TandemMod were thoroughly
validated in both synthetic datasets (ELIGOS, Curlcake, and IVET) with
ground-truth labels and biological samples (rice and several human
cell lines) with labels identified by Illumina-based methods such as
m6A-seq, miCLIP and m6ACE-Seq. Furthermore, TandemMod models
trained from IVET dataset performed better than those trained from
Curlcake both in vitro and in vivo (Fig. 3g, h and Fig. 6b). The superior
performance of TandemMod can be attributed to the following fac-
tors. First, we constructed IVET datasets for model training, allowing
TandemMod models to be trained in various sequence environments
and attain wider adaptability. Second, we selected a set of effective
features aswell as the rawcurrent signals to train TandemModmodels,
which could effectively capture the differences caused by modifica-
tions. Third, TandemMod is a deep learning framework, which is
capable of learning complex patterns and relationships in large data-
sets. The architecture of the TandemMod model allows it to learn
intricate patterns and subtle differences in the DRS data that may not
be readily apparent to other machine learning algorithms. Taken
together, these factors have resulted in TandemMod demonstrating
high accuracy and stability, making it an effective modification
detection tool. Moreover, TandemMod applied a transfer learning
strategy during the training process, which allowed the model to
leverage knowledge gained from previous tasks to improve perfor-
mance on new tasks. This enhanced the adaptability of TandemMod
andmade it easier to extend to newmodifications and species. By fine-
tuning the pre-trained model on new datasets, we can achieve better
performancewith less data and training time,making themodelsmore
efficient and effective.

Despite the high performance and adaptability of TandemMod,
there are still some limitations that need to be considered. First, its
accuracy on short reads may be lower than on longer reads (Fig. 2b).
This is because shorter reads tend to have lower sequencing quality at
both ends. If the read length is too short, there is a higher likelihood of
encountering a proportion of low-quality 5-mers. Therefore, it is
recommended to use longer reads when predicting modifications to
achieve best performance. To detect RNAmodifications on short RNA
transcripts like non-coding RNAs, 5’ RNA adapters and 3’RNA adapters
with polyA tails can be attached to the short RNA sequences. This

process extends them into longer ones, which can be used for gen-
erating DRS dataset suitable for the precise prediction of modification
marks by TandemMod. Second, TandemMod employs a cutoff strat-
egy based on prediction probability and modification rate to improve
accuracy. While this strategy can reduce the number of false positives,
it may also pose a risk of missing some true positive predictions,
especially for modification sites with low sequencing depth. Users
should be cautious when interpreting the results and consider alter-
native strategies for detecting RNA modification in low-depth
sequencing samples. TandemMod displayed best performance with
DRS signals from long mRNAs (>600 nt) and mRNA with high
sequencing depth,while the performancewoulddecreasewith current
signals from short mRNAs (<600nt) and mRNA with low sequencing
depth. Third, the DRS data, characterized by a significantly larger
number of unmodified bases compared to modified ones, are highly
unbalanced. When applying TandemMod to detect modification at
single base and single-read resolution, the precision of TandemMod is
compromised in sites with low modification rate (Supplementary
fig. 8e, f). Therefore, although TandemMod can provide modification
probability for every single base in single read, only thosemodification
sites detected by TandemModwith high confidence (e.g., modification
rate higher than 20% and reads more than 10) were recommended for
further examination at read level (single-base and single-read resolu-
tion). Finally, when dealing with modifications with high similarity,
such as distinguishing hm5C from m5C, the performance of Tandem-
Mod is relatively lower compared to the m6A and m5C models. With
advancements in Nanopore technology, direct RNA sequencing is
becoming increasingly accurate, and the performance of TandemMod
in distinguishing similar modifications is expected to improve in the
future. Although the predictions of TandemMod are generally not
influenced by neighboring modified bases, the confidence probability
may degrade in some cases (Supplementary Fig. 13f), leading to more
discarded reads.

To facilitate the utilization of TandemMod, three different modes
has been developed: de novo training, transfer learning, and predic-
tion (https://github.com/yulab2021/TandemMod). The mode of de
novo training allows users to train the TandemMod model from
scratch using their own datasets. It is ideal for researchers working
with novel species or distinct modification types, as it provides the
flexibility to build a customized model tailored to their data. In the
transfer learning mode, users can fine-tune a pre-trained TandemMod
model using their own data. This approach leverages the knowledge
gained from the initial training, enabling the model to adapt to new
data more quickly and with fewer training samples. In the prediction
mode, users can apply a pre-trained or fine-tuned TandemModmodel
to identify modifications in their dataset. This mode is useful for
researchers who want to obtain predictions on modification sites
without having to train their own model, saving time and computa-
tional resources. By offering these threemodes, TandemMod caters to
a wide range of research requirements and ensures a user-friendly
experience for exploring and analyzing RNA modifications.

In summary, we constructed an in vitro epitranscriptome (IVET)
resource using a rice cDNA library, which contains thousands of tran-
scripts labeled with m6A, m1A, and m5C modifications. The IVET

Fig. 6 | Transcriptome-wide profiling multiple types of rice RNAmodifications
under normal and high salinity environment. a Circos plots displaying the
density profiles of m6A,m5C, andΨ identified by TandemMod in both NaCl-treated
and control rice samples. b Bar plot showing the proportion of ranked m6A sites
with high confidence validated by m6A-seq. c The browser visualization showing
three examples of TandemMod-identifiedm6A sites validated bym6A-seq in 3’UTR
of given genes. TandemMod was able to detect m6Amodifications with single-base
resolution, which is a significant improvement over traditional m6A-seq methods
that provide only a limited resolution. d Enriched sequence motif of predicted

m6A-modified sites (left panel) and m5C-modified sites (right panel) in rice control
sample. e The distribution of predicted m6A-modified sites (left panel) and
m5C-modified sites (right panel) alongmRNA transcripts. f,gBar plots show the top
16 enriched Gene Ontology (GO) terms of differentially m6A-modified genes and
differentially m5C-modified genes. Two-sided Fisher’s exact test was used without
adjusting for multiple comparisons in this analysis. The statistics of reads with
simultaneous occurrence of m6A and m5C from transcripts LOC_Os03g52840.1 (h)
and LOC_Os03g20700.1 (i) in the rice WT sample. Source data are provided as a
Source Data file.
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dataset, with large sequence diversity and accurate labels, could serve
as a valuable resource for machine learning-based RNA modification
identification approaches. Then, we developed TandemMod, a trans-
ferable deep learning framework capable of accurately identifying
multiple types of RNAmodifications at single-base resolution in single
sample. Overall, the ability to identify multiple types of RNA mod-
ifications across species and conditions makes it a useful tool for
studying the complex landscape of epitranscriptome in various bio-
logical systems.

Methods
Plant materials and RNA isolation
Seeds of rice variety DongJing were plated on the Murashige and
Skoog (MS) medium (Hopebio, HB8469-5, China) containing 1%
sucrose (Solarbio, S8271, China) and 0.3% phytogel (Sigma-Aldrich,
P8169, USA), in the presence or absence of salt stress (100mM NaCl).
Two-week-old seedlings (grown at 25 °C, 16-h light and 8-h dark) were
harvested and immediately frozen in liquid nitrogen. Total RNA was
extractedusingRNA isolator (Vazyme, R401-01-AA, China), and treated
with RNase-free DNase I (NEB, M0303S, USA) at 37 °C for 15min to
remove any residual DNA. The quality and quantity of RNA was mea-
sured by NanoPhotometer NP80 (IMPLEN, Germany).

In vitro transcription of plant cDNA library and synthetic
sequences
The cDNA library containing cDNA of rice seedings and inflorescence
in plasmid pGADT7, was commercially available from OE BioTech
(Shanghai, China). The T7 promoter and rice cDNAs in the yeast two-
hybrid AD librarywere amplified with Phanta®Max Super-Fidelity DNA
Polymerase (Vazyme, P505-d1, China) using PCRprimers (AD-preT7-1-F
“CTATTCGATGATGAAGATAC” and AD-afterGene-R “GCACGATGCA-
CAGTTGAAGT”) before and after multiple cloning sites in pGADT7.
The PCR program used in the study was as follows: 95 °C for 5min,
followed by 10 cycles of denaturation at 95 °C for 30 s, annealing at
60 °C for 30 s, extension at 72 °C for 4min, and a final extension at
72 °C for 10min. PCR products containing T7 promoter and rice cDNA
sequences were used as templates for in vitro transcription by
MEGAscript T7 Kit (ThermoFisher, AM1333, USA) at 37 °C for 2.5 h to
produce non-modified rice mRNAs as control. At the same time, the
ATP in the raw material was replaced with m1ATP (N1-Methyl-ATP –

Solid, Jena Bioscience, NU-1027-1) or m6ATP (N6-Methyl-ATP, Jena
Bioscience, NU-1101S), or CTPwas replacedwithm5CTP (5-Methyl-CTP,
APExBio, B7967) for producing m1A-modiifed RNAs, m6A-modfiied
RNA and m5C-modified mRNAs, respectively. We also produced
m5C-modified samples from synthetic sequence in this work. The
synthetic “Curlcake 1” sequence (2244 bp)52 used in this study were
in vitro transcribed using the AmpliScribe T7-Flash Transcription Kit
(Lucigen, ASF3507, USA) with unmodified NTPs to produce control
sample; then CTP was replaced with m5CTP (5-Methyl-CTP, APExBio,
B7967) to transcribe m5C-modified sample. The in vitro transcripts
were treated with RNase-free DNase I (NEB, M0303S, USA) at 37 °C for
15min to remove residual DNA, and then were purified by RNeasyMini
Kit (QIAGEN, 74104, USA). The tailing reaction was catalyzed by E. coli
Poly(A) Polymerase (NEB, M0276S, USA) at 37 °C for 2 h. The products
were purified again by RNeasy Mini Kit, and then ethanol precipitated
overnight to obtain RNA for nanopore direct RNA sequencing.

Nanopore direct RNA sequencing
To prepare sequencing libraries, the ONT’s SQK-RNA002 protocol was
followed. First, reverse transcription (RT) adaptors were ligated onto
RNAs, and then RT was performed at 50 °C for 50min, followed by
70 °C for 10min before cooling to 4 °C. The RT products were cleaned
up using RNAClean XP beads (Beckman Coulter) and washed with 70%
ethanol. RNA motor protein was then ligated onto the RNA strand of
the RNA-DNA hybrid, and the reaction was cleaned up with RNAClean

XP beads again before two final washes with WB wash buffer. The
library was eluted with EB elution buffer and topped up with RNA
running buffer to a final volume of 75 μl before being loaded onto a
primed R9.4.1 flow cell (FLO-MIN106D). Sequencing was performed
using GridION MK1 and allowed to run for up to 72 h.

Nanopore signal preprocessing and feature extraction
All IVTs datasets and rice DRS data were processed using the fol-
lowing steps. First, the fast5 files containing raw electric signals were
basecalled using Guppy (v6.1.5 with options “--recursive --fast5_out
--config rna_r9.4.1_70bps_hac.cfg”, available at https://community.
nanoporetech.com/). Next, multi-fast5 files were converted to single-
fast5 files using ont_fast5_api with default parameters (v4.0.0, avail-
able at https://github.com/nanoporetech/ont_fast5_api). Then, base-
called sequences were corrected according to reference and aligned
to corresponding raw electric signals using tombo resquiggle(v1.5.1
with options ‘--overwrite --basecall-group Basecall_1D_000 --fit-glo-
bal-scale --include-event-stdev’)60. After resquiggling, each 5-mer raw
signal was obtained. To eliminate current drift and systematic errors
among devices, raw current signals were normalized by median and
median absolute deviation. Then, mean, standard deviation, median,
signal length and base quality were extracted as features for each
base. In order to obtain signals of the same length, each 5-mer raw
signal was interpolated using 1-order spline then the 5-mer inter-
polated signals were resampled to fixed-length (100 in this work).
Finally, base-level features and resampled signals of 5 consecutive
bases (25 base-level features and 500 resampled current signals)
were combined as input of deep learning model.

In nanopore sequencing, RNA/DNA molecules pass through the
nanopore at varying speeds, while the sequencing equipment main-
tains a fixed sample frequency. Consequently, this leads to differing
signal lengths for each base. To address this variability, we perform
signal resampling to generate signals of uniform length,which are then
used as input for our deep learningmodel. Inmathematics, a spline is a
special function defined piecewise by polynomials. Assume current
signals for a nucleotide with a length of k data points X = ðx1,x2, � � � ,xkÞ
were originally sampled from an interval ½a,b�. Define a function S that
maps the singals to R,

S : ½a,b� ! R ð1Þ

The interval a,b
� �

can be further divided into k-1 ordered, disjoint
subintervals according to each data point

a,b
� �

= t0,t1
� �

∪ t1,t2
� �

∪ � � � ∪ ðtk�2,tk�1� ð2Þ

For each subinterval, define a polynomial Pi that map the interval
to R

Pi : ½ti,ti+ 1� ! R ð3Þ

Then, the original current signals can be represented by piecewise
function Pi

S tð Þ=P0 tð Þ, t0 ≤ t < t1
S tð Þ=P1 tð Þ, t1 ≤ t < t2

..

.

S tð Þ=Pk�2 tð Þ, tk�2 ≤ t < tk�1

8
>>>><
>>>>:

ð4Þ

To attain smoothness in these curves, we need to impose con-
straints that ensure adjacent intervals have the same nth-order
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derivatives. These smoothed curves are commonly referred to as
splines:

Pð0Þ
i�1 tð Þ =Pð0Þ

i tð Þ
Pð1Þ
i�1 tð Þ =Pð1Þ

i tð Þ
..
.

PðnÞ
i�1 tð Þ =PðnÞ

i tð Þ

8
>>>>><
>>>>>:

ð5Þ

By solving the above constraint equations, we can get the inter-
polation function S tð Þ. Then, equally divide the interval a,b

� �
into

subintervals T 0 = ½t00, t01, � � � ,t0l�1� with length l (l = 100 in this work) and
resample new current values X 0 from S tð Þ at these l points.

X 0 = SðT 0Þ ð6Þ

In this script, we used 1-order spline interpolation to resample the
current signals to fixed length.

Model design
In this work, the main neural network consists of two sub neural net-
works, which deal with base-level features and current-level features
respectively (Fig. 2a and Supplementary Fig. 3). Thefirst sub-net, which
is modified from Song’s work77, consists of a 1-dimensinal convolu-
tional neural network (1D-CNN), a bi-directional long short-term
memory (bi-LSTM) unit and an attention unit. This module takes
resampled signal as input and the context vector of the attention unit
as output. The other sub-net is a bi-LSTM unit that takes base-level
features (mean, standard deviation,median, signal length, base quality
and encoded sequence) as input. The outputs of the two sub-nets are
concatenated and input into full-connected layers. The top layers of
the model act as feature extractor that learns modification-related
information and the bottom layers act as classifier that predict mod-
ification type. ReLU activation function is used to perform non-linear
operation. Dropout layers are used to mitigate overfitting. Pooling
layers are utilized to prune parameters. Cross entropy is chosen as loss
function. Adam optimizer is used to update network weights. Cross
entropy loss function is defined as,

loss = �
XC

c= 1
wc log

expðxn,cÞPc
i = 1 expðxn,iÞ

yn,c ð7Þ

Where x is the input, y is the label,w is the weight, C is the number of
classes. In addition to modification labels, the model can also output
prediction probabilities. The modification probability is calculated
through the softmax of model output.

Probability yi
� �

=
expðyiÞP
j expðyjÞ

ð8Þ

Where y is the output of full-connected layers. Softmax function
enables confidence probabilities vary from 0 to 1.

Data with skewed class proportions is very common in real world,
e.g., m6A-to-A ratio is typically 0.5% inmammal RNA samples1. For data
with imbalanced labels, we used a weighed random sampler to reduce
the impact of imbalanced data. First, each input data was assigned a
weight reciprocal to the sample number of corresponding class. Then,
the following random sampler selected data according to weights to
ensure balanced data being sampled.

Model training and evaluation
We trained and tested TandemMod on public datasets (Curlcake and
ELIGOS) and in vitro epitranscriptome (IVET) data (m1A, m6A,m5C, and
unmodified) with the corresponding modification labels. Each model
was trained using an input comprising 800,000 instances from both

modified and control samples, and the test set was composed of 4000
instances.We used the Adamoptimizer with a learning rate of 0.001 to
train the models. Cross-entropy was used as loss function to update
the parameters. The training process was stopped when the model
performance on test set was convergent to avoid overfitting. Then, a
series of validation tests were conducted to assess the model’s
performance.

To evaluate the model’s fitting ability, we randomly split each
dataset into a training set and a test set with a ratio of 4:1, and used
the training set for model training and the testing set for model
evaluation. The train-test split was performed using a python
script located in our repository at https://github.com/yulab2021/
TandemMod/tree/master/scripts.

To assess the model’s generalization capacity, we set aside a
portion of independent reads from select genes as test set, using the
reads from remaining genes as the training set. We also performed
cross dataset validation to further validate the model’s generalization
performance. First, TandemMod models were trained on Curlcake
datasets and validated on the ELIGOS dataset. Then, TandemMod
models were trained on IVET datasets and tested on Curlcake and
ELIGOS datasets, respectively. Finally, TandemModmodels trained on
IVET datasets were validated in two modification writer knock-out
human cell lines (METTL3-KO and NSUN2-KO) and five WT cell lines
(A549, HCT116, MCF7, HEPG2, and K562).

The classification performance was evaluated by the area under
receiver-operating characteristic (ROC) curve and precision-recall (PR)
curve. The ROC curve was created by plotting the true positive rate
(TPR) and the false positive rate (FPR). The PR curve was created by
precision and recall.

Precision=
TP

TP+FP
ð9Þ

Recall =
TP

TP+FN
ð10Þ

True Postive Rate =
TP

TP+FN
ð11Þ

False Positive Rate =
FP

FP+TN
ð12Þ

Where TP, FP, TN, FN represents true positive, false positive, true
negative, false negative, respectively.

Feature importance evaluation for the five input bases
In the TandemModmodel, although features from five consecutive
bases are utilized as input, the influence of each base is not uni-
form. To investigate which base the model predominantly focuses
on, we conducted an evaluation of base-level feature importance
of the trained TandemMod model. This was achieved by iteratively
altering the features corresponding to each of the five bases and
comparing the performance against the unaltered, baseline
results.

Initially, the TandemMod m6A model trained on the IVET dataset
was applied to the ELIGOS m6A dataset to establish the baseline
accuracy. Then, for each of the five input bases from the ELIGOS m6A
dataset, the base-level and current-level features corresponding to this
base were set to 0, and tested with TandemMod to obtain disturbed
accuracy. If a particular input base is more important than others, the
error between the baseline accuracy and disturbed accuracy will be
larger. Thus, the error can serve as a metric of feature importance for
the five input bases.
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Control of false positives
In tasks related to modification detection, false positives occur when
the model wrongly predicts a site as modified when it’s actually
unmodified. To tackle this issue, TandemMod employs a two-step
strategy designed to control false positives effectively.

Step 1: Adjusting Probability Threshold: In the first step, we
employ a read-level probability threshold cutoff. Typically, classifica-
tion models use a probability threshold of 0.5 to make predictions.
However, in TandemMod, we opt for amore conservative threshold of
0.95 to indicate a modified site in our predictions. This higher
threshold helps eliminate less confident predictions, significantly
reducing the occurrence of false positives.

Step 2: Aggregating Read-Level Predictions: In the second step,
TandemMod aggregates read-level predictions to generate site-level
predictions. Considering that the DRS datasets with modification
events at read level exhibit imbalance, and sequence depth sig-
nificantly affects the precision and recall of perdition tools78, specific
criteria must be met for a site to be classified as a true modified site: it
should have more than 10 supporting reads, and the modification rate
must be at least 0.2. This step further contributes to the reduction of
false positives.

By implementing these two steps, TandemModensures a rigorous
and effective approach to minimizing false positives in modification
detection tasks, resulting in more reliable and accurate predictions.

Read-level predictions and site-level predictions
TandemMod is designed to provide highly detailed information about
modifications in RNA. It achieves this by taking individual reads as
input and predicting modifications on a per-read basis. Furthermore,
TandemMod goes a step further by providing confident probabilities
for these predictions. To calculate these probabilities, TandemMod
employs a softmax transformation. This transformation is applied to
the output layer’s vector, where each element corresponds to a spe-
cific class or modification type. The softmax function ensures that the
probabilities sum up to 1 for all classes.

pi =
ezi

PN
j = 1 e

zj
ð13Þ

Where pi is the confident probability for each class i. zi is the neuron
output for each class i. N is the number of total classes.

TandemMod aggregates all available reads within a specific
genomic location to calculate the modification rate for that location.
For more in-depth information and details, please refer to our online
documentation at https://yulab2021.github.io/TandemMod_
document for a complete guide on how TandemMod works.

Transfer learning
TandemMod used transfer learning to enhance its performance in
detecting specific RNA modifications. Specifically, it fine-tuned pre-
trained neural network models on DRS data to detect specific mod-
ifications. The pre-trained models were initially trained on IVET data-
sets to learn general features. During transfer learning, we first froze
the top layers of the pre-trained model, including convolutional and
pooling layers, to preserve its ability to extract sequence features.
Then, the parameters of the fully connected layers of the pre-trained
model were updated through backpropagation using Adam optimizer
and cross-entropy loss function. Early stopping was employed to
prevent overfitting, and the best performing model is selected based
on the ROC-AUC score on the validation set. TandemMod can also
employ transfer learning across different species. By fine-tuning a pre-
trained model on DRS data from one species, TandemMod can detect
modifications in another species without requiring a large amount of
training data. This allows TandemMod to be more widely applicable
for modification detection in different organisms.

Comparison between TandeMod and other tools on human
cell lines
To measure the relative performance of TandemMod and other
models. We tested the performance of TandemMod on human K562
cell line and compared with nanom6A and m6Anet. The DRS data for
K562 cell line was obtained from Singapore nanopore expression
project68. To have a fair comparison with these tools, DRACH motifs
and RRACH motifs were utilized for comparison with m6Anet and
nanom6A, respectively. MeRIP-seq70 from the same cell line was used
as ground truth and ROC-AUC and PR-AUC were used as metrics to
evaluate themodel performance. It is important to know that, owing to
both computational methods and experimental method have their
own bias and the in vivo modification state is dynamic, the absolute
overlap betweendifferentmethodsmaynot be very high, however, the
relative performance is still comparable. The comparison of Tandem-
Mod with miCLIP27 and m6ACE-seq26 was conducted on HEK293T cell
line. The DRS data was obtained from Singapore nanopore expression
project68. The overlap between TandemMod predictions and miCLIP
was compared to that of m6ACE-seq and randomly selected A sites
from DRACH motifs with miCLIP.

De novo prediction of multi-types of modifications in
rice mRNAs
To evaluate the response ofmRNAmodifications to salt stress,mRNAs
from rice seedling under normal condition and salt stress (100mM
NaCl) were used for nanopore sequencing. To identify multi-types of
RNA modifications transcriptome-wide at single base resolution, we
first extracted base-level and current-level features from both NaCl
treated and control rice samples. Different types of RNAmodifications,
includingm6A,m5C, andΨ, were identified by TandemModmodels. To
control false positives, sites in each read with confident probability
>0.95were considered asmodified and sites in eachgenomic locations
with more than 10 reads and minimal modification rate of 0.2 were
considered as true modified sites. For conducting differential mod-
ification analysis, we employ Fisher’s exact test, a variant of the Chi-
square test method. In this analysis, we compare two samples to
identify genes that exhibit differential modifications. Each gene’s
modification count and expression count in the two samples are used
to construct a 2 × 2 contingency table. A distinct Fisher’s exact test is
performed for each gene, with each test focused on a specific pairwise
comparison.

2 × 2 contingency table for one gene

Total gene count Modified gene count

CK a b

NaCl c d

The p value of Fisher’s exact test is:

p=
binomða+b,aÞ×binomðc+d,cÞ

binomða+b+ c+d,a+ cÞ ð14Þ

Sites with Chi-square p value less than 0.05 were considered as
significantly salt-sensitive. Genes that contain salt-sensitive sites were
selected for GO enrichment analysis using RiceNetDB (https://bis.zju.
edu.cn/ricenetdb).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
PublishedDRSdatasets used in this studywere obtained from thework
of Novoa lab in National Center for Biotechnology Information (NCBI)
under the accession number GSE12430952, PRJNA56359136 and the
work of Intawat Nookaew under accession number SRP16602038. DRS
data of several human cell lines used in this study were publicly
available from Singapore nanopore expression project, which are
available at European Nucleotide Archive (ENA) under the accession
number PRJEB4434868. Rice m6A-seq data was obtained from Gene
Expression Omnibus (GEO) under the accession number GSE13554917.
The m6ACE-Seq and miCLIP data for human HEK293T cell line were
available in GEO database under the accession numbers of
GSE12450926 and GSE6375327, respectively. The MeRIP-seq for human
K562 cell line was available in GEO database under the accession
number of GSE20570970. Four In Vitro EpiTranscriptome (IVET) data-
sets, two IVT datasets derived from synthetic sequences and two rice
datasets generated by ONT Direct RNA sequencing have been depos-
ited in GEO database under the accession number GSE227087. Source
data are provided with this paper.

Code availability
The source code of the TandemMod79 is available for research pur-
poses at Github: https://github.com/yulab2021/TandemMod (https://
doi.org/10.5281/zenodo.10901797). Online documentation and run
examples are available at https://yulab2021.github.io/TandemMod_
document. The code to reproduce results in this manuscript is avail-
able at https://github.com/yulab2021/TandemMod/tree/master/
results_reproduce.
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